Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fnun
Next ⟩
fnund
Metamath Proof Explorer
Ascii
Unicode
Theorem
fnun
Description:
The union of two functions with disjoint domains.
(Contributed by
NM
, 22-Sep-2004)
Ref
Expression
Assertion
fnun
⊢
F
Fn
A
∧
G
Fn
B
∧
A
∩
B
=
∅
→
F
∪
G
Fn
A
∪
B
Proof
Step
Hyp
Ref
Expression
1
df-fn
⊢
F
Fn
A
↔
Fun
⁡
F
∧
dom
⁡
F
=
A
2
df-fn
⊢
G
Fn
B
↔
Fun
⁡
G
∧
dom
⁡
G
=
B
3
ineq12
⊢
dom
⁡
F
=
A
∧
dom
⁡
G
=
B
→
dom
⁡
F
∩
dom
⁡
G
=
A
∩
B
4
3
eqeq1d
⊢
dom
⁡
F
=
A
∧
dom
⁡
G
=
B
→
dom
⁡
F
∩
dom
⁡
G
=
∅
↔
A
∩
B
=
∅
5
4
anbi2d
⊢
dom
⁡
F
=
A
∧
dom
⁡
G
=
B
→
Fun
⁡
F
∧
Fun
⁡
G
∧
dom
⁡
F
∩
dom
⁡
G
=
∅
↔
Fun
⁡
F
∧
Fun
⁡
G
∧
A
∩
B
=
∅
6
funun
⊢
Fun
⁡
F
∧
Fun
⁡
G
∧
dom
⁡
F
∩
dom
⁡
G
=
∅
→
Fun
⁡
F
∪
G
7
5
6
syl6bir
⊢
dom
⁡
F
=
A
∧
dom
⁡
G
=
B
→
Fun
⁡
F
∧
Fun
⁡
G
∧
A
∩
B
=
∅
→
Fun
⁡
F
∪
G
8
dmun
⊢
dom
⁡
F
∪
G
=
dom
⁡
F
∪
dom
⁡
G
9
uneq12
⊢
dom
⁡
F
=
A
∧
dom
⁡
G
=
B
→
dom
⁡
F
∪
dom
⁡
G
=
A
∪
B
10
8
9
eqtrid
⊢
dom
⁡
F
=
A
∧
dom
⁡
G
=
B
→
dom
⁡
F
∪
G
=
A
∪
B
11
7
10
jctird
⊢
dom
⁡
F
=
A
∧
dom
⁡
G
=
B
→
Fun
⁡
F
∧
Fun
⁡
G
∧
A
∩
B
=
∅
→
Fun
⁡
F
∪
G
∧
dom
⁡
F
∪
G
=
A
∪
B
12
df-fn
⊢
F
∪
G
Fn
A
∪
B
↔
Fun
⁡
F
∪
G
∧
dom
⁡
F
∪
G
=
A
∪
B
13
11
12
syl6ibr
⊢
dom
⁡
F
=
A
∧
dom
⁡
G
=
B
→
Fun
⁡
F
∧
Fun
⁡
G
∧
A
∩
B
=
∅
→
F
∪
G
Fn
A
∪
B
14
13
expd
⊢
dom
⁡
F
=
A
∧
dom
⁡
G
=
B
→
Fun
⁡
F
∧
Fun
⁡
G
→
A
∩
B
=
∅
→
F
∪
G
Fn
A
∪
B
15
14
impcom
⊢
Fun
⁡
F
∧
Fun
⁡
G
∧
dom
⁡
F
=
A
∧
dom
⁡
G
=
B
→
A
∩
B
=
∅
→
F
∪
G
Fn
A
∪
B
16
15
an4s
⊢
Fun
⁡
F
∧
dom
⁡
F
=
A
∧
Fun
⁡
G
∧
dom
⁡
G
=
B
→
A
∩
B
=
∅
→
F
∪
G
Fn
A
∪
B
17
1
2
16
syl2anb
⊢
F
Fn
A
∧
G
Fn
B
→
A
∩
B
=
∅
→
F
∪
G
Fn
A
∪
B
18
17
imp
⊢
F
Fn
A
∧
G
Fn
B
∧
A
∩
B
=
∅
→
F
∪
G
Fn
A
∪
B