Metamath Proof Explorer


Theorem fnunop

Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by AV, 16-Aug-2024)

Ref Expression
Hypotheses fnunop.x φ X V
fnunop.y φ Y W
fnunop.f φ F Fn D
fnunop.g G = F X Y
fnunop.e E = D X
fnunop.d φ ¬ X D
Assertion fnunop φ G Fn E

Proof

Step Hyp Ref Expression
1 fnunop.x φ X V
2 fnunop.y φ Y W
3 fnunop.f φ F Fn D
4 fnunop.g G = F X Y
5 fnunop.e E = D X
6 fnunop.d φ ¬ X D
7 fnsng X V Y W X Y Fn X
8 1 2 7 syl2anc φ X Y Fn X
9 disjsn D X = ¬ X D
10 6 9 sylibr φ D X =
11 3 8 10 fnund φ F X Y Fn D X
12 4 fneq1i G Fn E F X Y Fn E
13 5 fneq2i F X Y Fn E F X Y Fn D X
14 12 13 bitri G Fn E F X Y Fn D X
15 11 14 sylibr φ G Fn E