Metamath Proof Explorer


Theorem fnunres2

Description: Restriction of a disjoint union to the domain of the second function. (Contributed by Thierry Arnoux, 12-Oct-2023)

Ref Expression
Assertion fnunres2 FFnAGFnBAB=FGB=G

Proof

Step Hyp Ref Expression
1 uncom FG=GF
2 1 reseq1i FGB=GFB
3 ineqcom AB=BA=
4 fnunres1 GFnBFFnABA=GFB=G
5 3 4 syl3an3b GFnBFFnAAB=GFB=G
6 5 3com12 FFnAGFnBAB=GFB=G
7 2 6 eqtrid FFnAGFnBAB=FGB=G