Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
First and second members of an ordered pair
fnwe
Metamath Proof Explorer
Description: A variant on lexicographic order, which sorts first by some function of
the base set, and then by a "backup" well-ordering when the function
value is equal on both elements. (Contributed by Mario Carneiro , 10-Mar-2013) (Revised by Mario Carneiro , 18-Nov-2014)
Ref
Expression
Hypotheses
fnwe.1
⊢ T = x y | x ∈ A ∧ y ∈ A ∧ F ⁡ x R F ⁡ y ∨ F ⁡ x = F ⁡ y ∧ x S y
fnwe.2
⊢ φ → F : A ⟶ B
fnwe.3
⊢ φ → R We B
fnwe.4
⊢ φ → S We A
fnwe.5
⊢ φ → F w ∈ V
Assertion
fnwe
⊢ φ → T We A
Proof
Step
Hyp
Ref
Expression
1
fnwe.1
⊢ T = x y | x ∈ A ∧ y ∈ A ∧ F ⁡ x R F ⁡ y ∨ F ⁡ x = F ⁡ y ∧ x S y
2
fnwe.2
⊢ φ → F : A ⟶ B
3
fnwe.3
⊢ φ → R We B
4
fnwe.4
⊢ φ → S We A
5
fnwe.5
⊢ φ → F w ∈ V
6
eqid
⊢ u v | u ∈ B × A ∧ v ∈ B × A ∧ 1 st ⁡ u R 1 st ⁡ v ∨ 1 st ⁡ u = 1 st ⁡ v ∧ 2 nd ⁡ u S 2 nd ⁡ v = u v | u ∈ B × A ∧ v ∈ B × A ∧ 1 st ⁡ u R 1 st ⁡ v ∨ 1 st ⁡ u = 1 st ⁡ v ∧ 2 nd ⁡ u S 2 nd ⁡ v
7
eqid
⊢ z ∈ A ⟼ F ⁡ z z = z ∈ A ⟼ F ⁡ z z
8
1 2 3 4 5 6 7
fnwelem
⊢ φ → T We A