Metamath Proof Explorer


Theorem fnwe2

Description: A well-ordering can be constructed on a partitioned set by patching together well-orderings on each partition using a well-ordering on the partitions themselves. Similar to fnwe but does not require the within-partition ordering to be globally well. (Contributed by Stefan O'Rear, 19-Jan-2015)

Ref Expression
Hypotheses fnwe2.su z = F x S = U
fnwe2.t T = x y | F x R F y F x = F y x U y
fnwe2.s φ x A U We y A | F y = F x
fnwe2.f φ F A : A B
fnwe2.r φ R We B
Assertion fnwe2 φ T We A

Proof

Step Hyp Ref Expression
1 fnwe2.su z = F x S = U
2 fnwe2.t T = x y | F x R F y F x = F y x U y
3 fnwe2.s φ x A U We y A | F y = F x
4 fnwe2.f φ F A : A B
5 fnwe2.r φ R We B
6 3 adantlr φ a A a x A U We y A | F y = F x
7 4 adantr φ a A a F A : A B
8 5 adantr φ a A a R We B
9 simprl φ a A a a A
10 simprr φ a A a a
11 1 2 6 7 8 9 10 fnwe2lem2 φ a A a c a d a ¬ d T c
12 11 ex φ a A a c a d a ¬ d T c
13 12 alrimiv φ a a A a c a d a ¬ d T c
14 df-fr T Fr A a a A a c a d a ¬ d T c
15 13 14 sylibr φ T Fr A
16 3 adantlr φ a A b A x A U We y A | F y = F x
17 4 adantr φ a A b A F A : A B
18 5 adantr φ a A b A R We B
19 simprl φ a A b A a A
20 simprr φ a A b A b A
21 1 2 16 17 18 19 20 fnwe2lem3 φ a A b A a T b a = b b T a
22 21 ralrimivva φ a A b A a T b a = b b T a
23 dfwe2 T We A T Fr A a A b A a T b a = b b T a
24 15 22 23 sylanbrc φ T We A