Metamath Proof Explorer


Theorem fnwe2lem1

Description: Lemma for fnwe2 . Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015)

Ref Expression
Hypotheses fnwe2.su z = F x S = U
fnwe2.t T = x y | F x R F y F x = F y x U y
fnwe2.s φ x A U We y A | F y = F x
Assertion fnwe2lem1 φ a A F a / z S We y A | F y = F a

Proof

Step Hyp Ref Expression
1 fnwe2.su z = F x S = U
2 fnwe2.t T = x y | F x R F y F x = F y x U y
3 fnwe2.s φ x A U We y A | F y = F x
4 3 ralrimiva φ x A U We y A | F y = F x
5 fveq2 a = x F a = F x
6 5 csbeq1d a = x F a / z S = F x / z S
7 fvex F x V
8 7 1 csbie F x / z S = U
9 6 8 eqtrdi a = x F a / z S = U
10 5 eqeq2d a = x F y = F a F y = F x
11 10 rabbidv a = x y A | F y = F a = y A | F y = F x
12 9 11 weeq12d a = x F a / z S We y A | F y = F a U We y A | F y = F x
13 12 cbvralvw a A F a / z S We y A | F y = F a x A U We y A | F y = F x
14 4 13 sylibr φ a A F a / z S We y A | F y = F a
15 14 r19.21bi φ a A F a / z S We y A | F y = F a