Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fo00
Next ⟩
f1o0
Metamath Proof Explorer
Ascii
Unicode
Theorem
fo00
Description:
Onto mapping of the empty set.
(Contributed by
NM
, 22-Mar-2006)
Ref
Expression
Assertion
fo00
⊢
F
:
∅
⟶
onto
A
↔
F
=
∅
∧
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
fofn
⊢
F
:
∅
⟶
onto
A
→
F
Fn
∅
2
fn0
⊢
F
Fn
∅
↔
F
=
∅
3
f10
⊢
∅
:
∅
⟶
1-1
A
4
f1eq1
⊢
F
=
∅
→
F
:
∅
⟶
1-1
A
↔
∅
:
∅
⟶
1-1
A
5
3
4
mpbiri
⊢
F
=
∅
→
F
:
∅
⟶
1-1
A
6
2
5
sylbi
⊢
F
Fn
∅
→
F
:
∅
⟶
1-1
A
7
1
6
syl
⊢
F
:
∅
⟶
onto
A
→
F
:
∅
⟶
1-1
A
8
7
ancri
⊢
F
:
∅
⟶
onto
A
→
F
:
∅
⟶
1-1
A
∧
F
:
∅
⟶
onto
A
9
df-f1o
⊢
F
:
∅
⟶
1-1 onto
A
↔
F
:
∅
⟶
1-1
A
∧
F
:
∅
⟶
onto
A
10
8
9
sylibr
⊢
F
:
∅
⟶
onto
A
→
F
:
∅
⟶
1-1 onto
A
11
f1ofo
⊢
F
:
∅
⟶
1-1 onto
A
→
F
:
∅
⟶
onto
A
12
10
11
impbii
⊢
F
:
∅
⟶
onto
A
↔
F
:
∅
⟶
1-1 onto
A
13
f1o00
⊢
F
:
∅
⟶
1-1 onto
A
↔
F
=
∅
∧
A
=
∅
14
12
13
bitri
⊢
F
:
∅
⟶
onto
A
↔
F
=
∅
∧
A
=
∅