Metamath Proof Explorer


Theorem fo00

Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006)

Ref Expression
Assertion fo00 F : onto A F = A =

Proof

Step Hyp Ref Expression
1 fofn F : onto A F Fn
2 fn0 F Fn F =
3 f10 : 1-1 A
4 f1eq1 F = F : 1-1 A : 1-1 A
5 3 4 mpbiri F = F : 1-1 A
6 2 5 sylbi F Fn F : 1-1 A
7 1 6 syl F : onto A F : 1-1 A
8 7 ancri F : onto A F : 1-1 A F : onto A
9 df-f1o F : 1-1 onto A F : 1-1 A F : onto A
10 8 9 sylibr F : onto A F : 1-1 onto A
11 f1ofo F : 1-1 onto A F : onto A
12 10 11 impbii F : onto A F : 1-1 onto A
13 f1o00 F : 1-1 onto A F = A =
14 12 13 bitri F : onto A F = A =