Metamath Proof Explorer


Theorem fo1st

Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion fo1st 1 st : V onto V

Proof

Step Hyp Ref Expression
1 snex x V
2 1 dmex dom x V
3 2 uniex dom x V
4 df-1st 1 st = x V dom x
5 3 4 fnmpti 1 st Fn V
6 4 rnmpt ran 1 st = y | x V y = dom x
7 vex y V
8 opex y y V
9 7 7 op1sta dom y y = y
10 9 eqcomi y = dom y y
11 sneq x = y y x = y y
12 11 dmeqd x = y y dom x = dom y y
13 12 unieqd x = y y dom x = dom y y
14 13 rspceeqv y y V y = dom y y x V y = dom x
15 8 10 14 mp2an x V y = dom x
16 7 15 2th y V x V y = dom x
17 16 abbi2i V = y | x V y = dom x
18 6 17 eqtr4i ran 1 st = V
19 df-fo 1 st : V onto V 1 st Fn V ran 1 st = V
20 5 18 19 mpbir2an 1 st : V onto V