Metamath Proof Explorer


Theorem fo2nd

Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion fo2nd 2 nd : V onto V

Proof

Step Hyp Ref Expression
1 snex x V
2 1 rnex ran x V
3 2 uniex ran x V
4 df-2nd 2 nd = x V ran x
5 3 4 fnmpti 2 nd Fn V
6 4 rnmpt ran 2 nd = y | x V y = ran x
7 vex y V
8 opex y y V
9 7 7 op2nda ran y y = y
10 9 eqcomi y = ran y y
11 sneq x = y y x = y y
12 11 rneqd x = y y ran x = ran y y
13 12 unieqd x = y y ran x = ran y y
14 13 rspceeqv y y V y = ran y y x V y = ran x
15 8 10 14 mp2an x V y = ran x
16 7 15 2th y V x V y = ran x
17 16 abbi2i V = y | x V y = ran x
18 6 17 eqtr4i ran 2 nd = V
19 df-fo 2 nd : V onto V 2 nd Fn V ran 2 nd = V
20 5 18 19 mpbir2an 2 nd : V onto V