Metamath Proof Explorer


Theorem fo2ndf

Description: The 2nd (second component of an ordered pair) function restricted to a function F is a function from F onto the range of F . (Contributed by Alexander van der Vekens, 4-Feb-2018)

Ref Expression
Assertion fo2ndf F : A B 2 nd F : F onto ran F

Proof

Step Hyp Ref Expression
1 ffrn F : A B F : A ran F
2 f2ndf F : A ran F 2 nd F : F ran F
3 1 2 syl F : A B 2 nd F : F ran F
4 ffn F : A B F Fn A
5 dffn3 F Fn A F : A ran F
6 5 2 sylbi F Fn A 2 nd F : F ran F
7 4 6 syl F : A B 2 nd F : F ran F
8 7 frnd F : A B ran 2 nd F ran F
9 elrn2g y ran F y ran F x x y F
10 9 ibi y ran F x x y F
11 fvres x y F 2 nd F x y = 2 nd x y
12 11 adantl F : A B x y F 2 nd F x y = 2 nd x y
13 vex x V
14 vex y V
15 13 14 op2nd 2 nd x y = y
16 12 15 eqtr2di F : A B x y F y = 2 nd F x y
17 f2ndf F : A B 2 nd F : F B
18 17 ffnd F : A B 2 nd F Fn F
19 fnfvelrn 2 nd F Fn F x y F 2 nd F x y ran 2 nd F
20 18 19 sylan F : A B x y F 2 nd F x y ran 2 nd F
21 16 20 eqeltrd F : A B x y F y ran 2 nd F
22 21 ex F : A B x y F y ran 2 nd F
23 22 exlimdv F : A B x x y F y ran 2 nd F
24 10 23 syl5 F : A B y ran F y ran 2 nd F
25 24 ssrdv F : A B ran F ran 2 nd F
26 8 25 eqssd F : A B ran 2 nd F = ran F
27 dffo2 2 nd F : F onto ran F 2 nd F : F ran F ran 2 nd F = ran F
28 3 26 27 sylanbrc F : A B 2 nd F : F onto ran F