Metamath Proof Explorer


Theorem focdmex

Description: The codomain of an onto function is a set if its domain is a set. (Contributed by AV, 4-May-2021)

Ref Expression
Assertion focdmex A V F : A onto B B V

Proof

Step Hyp Ref Expression
1 fof F : A onto B F : A B
2 1 anim2i A V F : A onto B A V F : A B
3 2 ancomd A V F : A onto B F : A B A V
4 fex F : A B A V F V
5 rnexg F V ran F V
6 3 4 5 3syl A V F : A onto B ran F V
7 forn F : A onto B ran F = B
8 7 eleq1d F : A onto B ran F V B V
9 8 adantl A V F : A onto B ran F V B V
10 6 9 mpbid A V F : A onto B B V