Metamath Proof Explorer


Theorem focnvimacdmdm

Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024)

Ref Expression
Assertion focnvimacdmdm G : A onto B G -1 B = A

Proof

Step Hyp Ref Expression
1 forn G : A onto B ran G = B
2 1 eqcomd G : A onto B B = ran G
3 2 imaeq2d G : A onto B G -1 B = G -1 ran G
4 cnvimarndm G -1 ran G = dom G
5 3 4 eqtrdi G : A onto B G -1 B = dom G
6 fof G : A onto B G : A B
7 6 fdmd G : A onto B dom G = A
8 5 7 eqtrd G : A onto B G -1 B = A