Metamath Proof Explorer


Theorem focofo

Description: Composition of onto functions. Generalisation of foco . (Contributed by AV, 29-Sep-2024)

Ref Expression
Assertion focofo F : A onto B Fun G A ran G F G : G -1 A onto B

Proof

Step Hyp Ref Expression
1 fof F : A onto B F : A B
2 fcof F : A B Fun G F G : G -1 A B
3 1 2 sylan F : A onto B Fun G F G : G -1 A B
4 3 3adant3 F : A onto B Fun G A ran G F G : G -1 A B
5 rnco ran F G = ran F ran G
6 1 freld F : A onto B Rel F
7 6 3ad2ant1 F : A onto B Fun G A ran G Rel F
8 fdm F : A B dom F = A
9 8 eqcomd F : A B A = dom F
10 1 9 syl F : A onto B A = dom F
11 10 sseq1d F : A onto B A ran G dom F ran G
12 11 biimpa F : A onto B A ran G dom F ran G
13 relssres Rel F dom F ran G F ran G = F
14 13 rneqd Rel F dom F ran G ran F ran G = ran F
15 7 12 14 3imp3i2an F : A onto B Fun G A ran G ran F ran G = ran F
16 forn F : A onto B ran F = B
17 16 3ad2ant1 F : A onto B Fun G A ran G ran F = B
18 15 17 eqtrd F : A onto B Fun G A ran G ran F ran G = B
19 5 18 eqtrid F : A onto B Fun G A ran G ran F G = B
20 dffo2 F G : G -1 A onto B F G : G -1 A B ran F G = B
21 4 19 20 sylanbrc F : A onto B Fun G A ran G F G : G -1 A onto B