Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
foconst
Next ⟩
f1oeq1
Metamath Proof Explorer
Ascii
Unicode
Theorem
foconst
Description:
A nonzero constant function is onto.
(Contributed by
NM
, 12-Jan-2007)
Ref
Expression
Assertion
foconst
⊢
F
:
A
⟶
B
∧
F
≠
∅
→
F
:
A
⟶
onto
B
Proof
Step
Hyp
Ref
Expression
1
frel
⊢
F
:
A
⟶
B
→
Rel
⁡
F
2
relrn0
⊢
Rel
⁡
F
→
F
=
∅
↔
ran
⁡
F
=
∅
3
2
necon3abid
⊢
Rel
⁡
F
→
F
≠
∅
↔
¬
ran
⁡
F
=
∅
4
1
3
syl
⊢
F
:
A
⟶
B
→
F
≠
∅
↔
¬
ran
⁡
F
=
∅
5
frn
⊢
F
:
A
⟶
B
→
ran
⁡
F
⊆
B
6
sssn
⊢
ran
⁡
F
⊆
B
↔
ran
⁡
F
=
∅
∨
ran
⁡
F
=
B
7
5
6
sylib
⊢
F
:
A
⟶
B
→
ran
⁡
F
=
∅
∨
ran
⁡
F
=
B
8
7
ord
⊢
F
:
A
⟶
B
→
¬
ran
⁡
F
=
∅
→
ran
⁡
F
=
B
9
4
8
sylbid
⊢
F
:
A
⟶
B
→
F
≠
∅
→
ran
⁡
F
=
B
10
9
imdistani
⊢
F
:
A
⟶
B
∧
F
≠
∅
→
F
:
A
⟶
B
∧
ran
⁡
F
=
B
11
dffo2
⊢
F
:
A
⟶
onto
B
↔
F
:
A
⟶
B
∧
ran
⁡
F
=
B
12
10
11
sylibr
⊢
F
:
A
⟶
B
∧
F
≠
∅
→
F
:
A
⟶
onto
B