Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fodmrnu
Next ⟩
fimadmfo
Metamath Proof Explorer
Ascii
Unicode
Theorem
fodmrnu
Description:
An onto function has unique domain and range.
(Contributed by
NM
, 5-Nov-2006)
Ref
Expression
Assertion
fodmrnu
⊢
F
:
A
⟶
onto
B
∧
F
:
C
⟶
onto
D
→
A
=
C
∧
B
=
D
Proof
Step
Hyp
Ref
Expression
1
fofn
⊢
F
:
A
⟶
onto
B
→
F
Fn
A
2
fofn
⊢
F
:
C
⟶
onto
D
→
F
Fn
C
3
fndmu
⊢
F
Fn
A
∧
F
Fn
C
→
A
=
C
4
1
2
3
syl2an
⊢
F
:
A
⟶
onto
B
∧
F
:
C
⟶
onto
D
→
A
=
C
5
forn
⊢
F
:
A
⟶
onto
B
→
ran
⁡
F
=
B
6
forn
⊢
F
:
C
⟶
onto
D
→
ran
⁡
F
=
D
7
5
6
sylan9req
⊢
F
:
A
⟶
onto
B
∧
F
:
C
⟶
onto
D
→
B
=
D
8
4
7
jca
⊢
F
:
A
⟶
onto
B
∧
F
:
C
⟶
onto
D
→
A
=
C
∧
B
=
D