| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fof |  | 
						
							| 2 | 1 | fdmd |  | 
						
							| 3 | 2 | eqeq1d |  | 
						
							| 4 |  | dm0rn0 |  | 
						
							| 5 |  | forn |  | 
						
							| 6 | 5 | eqeq1d |  | 
						
							| 7 | 4 6 | bitrid |  | 
						
							| 8 | 3 7 | bitr3d |  | 
						
							| 9 | 8 | necon3bid |  | 
						
							| 10 | 9 | biimpac |  | 
						
							| 11 |  | vex |  | 
						
							| 12 | 11 | dmex |  | 
						
							| 13 | 2 12 | eqeltrrdi |  | 
						
							| 14 |  | focdmex |  | 
						
							| 15 | 13 14 | mpcom |  | 
						
							| 16 |  | 0sdomg |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 17 | adantl |  | 
						
							| 19 | 10 18 | mpbird |  | 
						
							| 20 | 19 | ex |  | 
						
							| 21 |  | fodomg |  | 
						
							| 22 | 13 21 | mpcom |  | 
						
							| 23 | 20 22 | jca2 |  | 
						
							| 24 | 23 | exlimdv |  | 
						
							| 25 | 24 | imp |  | 
						
							| 26 |  | sdomdomtr |  | 
						
							| 27 |  | reldom |  | 
						
							| 28 | 27 | brrelex2i |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 |  | 0sdomg |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 | 26 31 | mpbid |  | 
						
							| 33 |  | fodomr |  | 
						
							| 34 | 32 33 | jca |  | 
						
							| 35 | 25 34 | impbii |  |