Description: An onto function implies dominance of domain over range, for finite sets. Unlike fodomg for arbitrary sets, this theorem does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006) (Proof shortened by Mario Carneiro, 16-Nov-2014) Avoid ax-pow . (Revised by BTernaryTau, 20-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | fodomfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | foima | |
|
2 | 1 | adantl | |
3 | imaeq2 | |
|
4 | ima0 | |
|
5 | 3 4 | eqtrdi | |
6 | id | |
|
7 | 5 6 | breq12d | |
8 | 7 | imbi2d | |
9 | imaeq2 | |
|
10 | id | |
|
11 | 9 10 | breq12d | |
12 | 11 | imbi2d | |
13 | imaeq2 | |
|
14 | id | |
|
15 | 13 14 | breq12d | |
16 | 15 | imbi2d | |
17 | imaeq2 | |
|
18 | id | |
|
19 | 17 18 | breq12d | |
20 | 19 | imbi2d | |
21 | 0ex | |
|
22 | 21 | 0dom | |
23 | 22 | a1i | |
24 | fnfun | |
|
25 | 24 | ad2antrl | |
26 | funressn | |
|
27 | rnss | |
|
28 | 25 26 27 | 3syl | |
29 | df-ima | |
|
30 | vex | |
|
31 | 30 | rnsnop | |
32 | 31 | eqcomi | |
33 | 28 29 32 | 3sstr4g | |
34 | snfi | |
|
35 | ssexg | |
|
36 | 33 34 35 | sylancl | |
37 | fvi | |
|
38 | 36 37 | syl | |
39 | 38 | uneq2d | |
40 | imaundi | |
|
41 | 39 40 | eqtr4di | |
42 | simprr | |
|
43 | ssdomfi | |
|
44 | 34 33 43 | mpsyl | |
45 | fvex | |
|
46 | en2sn | |
|
47 | 45 30 46 | mp2an | |
48 | endom | |
|
49 | domtrfi | |
|
50 | 34 49 | mp3an1 | |
51 | 48 50 | sylan2 | |
52 | 44 47 51 | sylancl | |
53 | 38 52 | eqbrtrd | |
54 | simplr | |
|
55 | disjsn | |
|
56 | 54 55 | sylibr | |
57 | undom | |
|
58 | 42 53 56 57 | syl21anc | |
59 | 41 58 | eqbrtrrd | |
60 | 59 | exp32 | |
61 | 60 | a2d | |
62 | 8 12 16 20 23 61 | findcard2s | |
63 | fofn | |
|
64 | 62 63 | impel | |
65 | 2 64 | eqbrtrrd | |