Metamath Proof Explorer


Theorem fodomfir

Description: There exists a mapping from a finite set onto any nonempty set that it dominates, proved without using the Axiom of Power Sets (unlike fodomr ). (Contributed by BTernaryTau, 23-Jun-2025)

Ref Expression
Assertion fodomfir A Fin B B A f f : A onto B

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex2i B B V
3 0sdomg B V B B
4 n0 B z z B
5 3 4 bitrdi B V B z z B
6 2 5 syl B B z z B
7 6 ibi B z z B
8 domfi A Fin B A B Fin
9 simpl A Fin B A A Fin
10 brdomi B A g g : B 1-1 A
11 f1fn g : B 1-1 A g Fn B
12 fnfi g Fn B B Fin g Fin
13 11 12 sylan g : B 1-1 A B Fin g Fin
14 13 ex g : B 1-1 A B Fin g Fin
15 cnvfi g Fin g -1 Fin
16 diffi A Fin A ran g Fin
17 snfi z Fin
18 xpfi A ran g Fin z Fin A ran g × z Fin
19 16 17 18 sylancl A Fin A ran g × z Fin
20 unfi g -1 Fin A ran g × z Fin g -1 A ran g × z Fin
21 15 19 20 syl2an g Fin A Fin g -1 A ran g × z Fin
22 df-f1 g : B 1-1 A g : B A Fun g -1
23 22 simprbi g : B 1-1 A Fun g -1
24 vex z V
25 24 fconst A ran g × z : A ran g z
26 ffun A ran g × z : A ran g z Fun A ran g × z
27 25 26 ax-mp Fun A ran g × z
28 23 27 jctir g : B 1-1 A Fun g -1 Fun A ran g × z
29 df-rn ran g = dom g -1
30 29 eqcomi dom g -1 = ran g
31 24 snnz z
32 dmxp z dom A ran g × z = A ran g
33 31 32 ax-mp dom A ran g × z = A ran g
34 30 33 ineq12i dom g -1 dom A ran g × z = ran g A ran g
35 disjdif ran g A ran g =
36 34 35 eqtri dom g -1 dom A ran g × z =
37 funun Fun g -1 Fun A ran g × z dom g -1 dom A ran g × z = Fun g -1 A ran g × z
38 28 36 37 sylancl g : B 1-1 A Fun g -1 A ran g × z
39 38 adantl z B g : B 1-1 A Fun g -1 A ran g × z
40 dmun dom g -1 A ran g × z = dom g -1 dom A ran g × z
41 29 uneq1i ran g dom A ran g × z = dom g -1 dom A ran g × z
42 33 uneq2i ran g dom A ran g × z = ran g A ran g
43 40 41 42 3eqtr2i dom g -1 A ran g × z = ran g A ran g
44 f1f g : B 1-1 A g : B A
45 44 frnd g : B 1-1 A ran g A
46 undif ran g A ran g A ran g = A
47 45 46 sylib g : B 1-1 A ran g A ran g = A
48 43 47 eqtrid g : B 1-1 A dom g -1 A ran g × z = A
49 48 adantl z B g : B 1-1 A dom g -1 A ran g × z = A
50 df-fn g -1 A ran g × z Fn A Fun g -1 A ran g × z dom g -1 A ran g × z = A
51 39 49 50 sylanbrc z B g : B 1-1 A g -1 A ran g × z Fn A
52 rnun ran g -1 A ran g × z = ran g -1 ran A ran g × z
53 dfdm4 dom g = ran g -1
54 f1dm g : B 1-1 A dom g = B
55 53 54 eqtr3id g : B 1-1 A ran g -1 = B
56 55 uneq1d g : B 1-1 A ran g -1 ran A ran g × z = B ran A ran g × z
57 xpeq1 A ran g = A ran g × z = × z
58 0xp × z =
59 57 58 eqtrdi A ran g = A ran g × z =
60 59 rneqd A ran g = ran A ran g × z = ran
61 rn0 ran =
62 60 61 eqtrdi A ran g = ran A ran g × z =
63 0ss B
64 62 63 eqsstrdi A ran g = ran A ran g × z B
65 64 a1d A ran g = z B ran A ran g × z B
66 rnxp A ran g ran A ran g × z = z
67 66 adantr A ran g z B ran A ran g × z = z
68 snssi z B z B
69 68 adantl A ran g z B z B
70 67 69 eqsstrd A ran g z B ran A ran g × z B
71 70 ex A ran g z B ran A ran g × z B
72 65 71 pm2.61ine z B ran A ran g × z B
73 ssequn2 ran A ran g × z B B ran A ran g × z = B
74 72 73 sylib z B B ran A ran g × z = B
75 56 74 sylan9eqr z B g : B 1-1 A ran g -1 ran A ran g × z = B
76 52 75 eqtrid z B g : B 1-1 A ran g -1 A ran g × z = B
77 df-fo g -1 A ran g × z : A onto B g -1 A ran g × z Fn A ran g -1 A ran g × z = B
78 51 76 77 sylanbrc z B g : B 1-1 A g -1 A ran g × z : A onto B
79 foeq1 f = g -1 A ran g × z f : A onto B g -1 A ran g × z : A onto B
80 79 spcegv g -1 A ran g × z Fin g -1 A ran g × z : A onto B f f : A onto B
81 21 78 80 syl2im g Fin A Fin z B g : B 1-1 A f f : A onto B
82 81 expcomd g Fin A Fin g : B 1-1 A z B f f : A onto B
83 82 com12 g : B 1-1 A g Fin A Fin z B f f : A onto B
84 14 83 syland g : B 1-1 A B Fin A Fin z B f f : A onto B
85 84 exlimiv g g : B 1-1 A B Fin A Fin z B f f : A onto B
86 10 85 syl B A B Fin A Fin z B f f : A onto B
87 86 adantl A Fin B A B Fin A Fin z B f f : A onto B
88 8 9 87 mp2and A Fin B A z B f f : A onto B
89 88 exlimdv A Fin B A z z B f f : A onto B
90 7 89 syl5 A Fin B A B f f : A onto B
91 90 3impia A Fin B A B f f : A onto B
92 91 3com23 A Fin B B A f f : A onto B