Step |
Hyp |
Ref |
Expression |
1 |
|
relsdom |
|
2 |
1
|
brrelex2i |
|
3 |
|
0sdomg |
|
4 |
|
n0 |
|
5 |
3 4
|
bitrdi |
|
6 |
2 5
|
syl |
|
7 |
6
|
ibi |
|
8 |
|
domfi |
|
9 |
|
simpl |
|
10 |
|
brdomi |
|
11 |
|
f1fn |
|
12 |
|
fnfi |
|
13 |
11 12
|
sylan |
|
14 |
13
|
ex |
|
15 |
|
cnvfi |
|
16 |
|
diffi |
|
17 |
|
snfi |
|
18 |
|
xpfi |
|
19 |
16 17 18
|
sylancl |
|
20 |
|
unfi |
|
21 |
15 19 20
|
syl2an |
|
22 |
|
df-f1 |
|
23 |
22
|
simprbi |
|
24 |
|
vex |
|
25 |
24
|
fconst |
|
26 |
|
ffun |
|
27 |
25 26
|
ax-mp |
|
28 |
23 27
|
jctir |
|
29 |
|
df-rn |
|
30 |
29
|
eqcomi |
|
31 |
24
|
snnz |
|
32 |
|
dmxp |
|
33 |
31 32
|
ax-mp |
|
34 |
30 33
|
ineq12i |
|
35 |
|
disjdif |
|
36 |
34 35
|
eqtri |
|
37 |
|
funun |
|
38 |
28 36 37
|
sylancl |
|
39 |
38
|
adantl |
|
40 |
|
dmun |
|
41 |
29
|
uneq1i |
|
42 |
33
|
uneq2i |
|
43 |
40 41 42
|
3eqtr2i |
|
44 |
|
f1f |
|
45 |
44
|
frnd |
|
46 |
|
undif |
|
47 |
45 46
|
sylib |
|
48 |
43 47
|
eqtrid |
|
49 |
48
|
adantl |
|
50 |
|
df-fn |
|
51 |
39 49 50
|
sylanbrc |
|
52 |
|
rnun |
|
53 |
|
dfdm4 |
|
54 |
|
f1dm |
|
55 |
53 54
|
eqtr3id |
|
56 |
55
|
uneq1d |
|
57 |
|
xpeq1 |
|
58 |
|
0xp |
|
59 |
57 58
|
eqtrdi |
|
60 |
59
|
rneqd |
|
61 |
|
rn0 |
|
62 |
60 61
|
eqtrdi |
|
63 |
|
0ss |
|
64 |
62 63
|
eqsstrdi |
|
65 |
64
|
a1d |
|
66 |
|
rnxp |
|
67 |
66
|
adantr |
|
68 |
|
snssi |
|
69 |
68
|
adantl |
|
70 |
67 69
|
eqsstrd |
|
71 |
70
|
ex |
|
72 |
65 71
|
pm2.61ine |
|
73 |
|
ssequn2 |
|
74 |
72 73
|
sylib |
|
75 |
56 74
|
sylan9eqr |
|
76 |
52 75
|
eqtrid |
|
77 |
|
df-fo |
|
78 |
51 76 77
|
sylanbrc |
|
79 |
|
foeq1 |
|
80 |
79
|
spcegv |
|
81 |
21 78 80
|
syl2im |
|
82 |
81
|
expcomd |
|
83 |
82
|
com12 |
|
84 |
14 83
|
syland |
|
85 |
84
|
exlimiv |
|
86 |
10 85
|
syl |
|
87 |
86
|
adantl |
|
88 |
8 9 87
|
mp2and |
|
89 |
88
|
exlimdv |
|
90 |
7 89
|
syl5 |
|
91 |
90
|
3impia |
|
92 |
91
|
3com23 |
|