| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relsdom |  | 
						
							| 2 | 1 | brrelex2i |  | 
						
							| 3 |  | 0sdomg |  | 
						
							| 4 |  | n0 |  | 
						
							| 5 | 3 4 | bitrdi |  | 
						
							| 6 | 2 5 | syl |  | 
						
							| 7 | 6 | ibi |  | 
						
							| 8 |  | domfi |  | 
						
							| 9 |  | simpl |  | 
						
							| 10 |  | brdomi |  | 
						
							| 11 |  | f1fn |  | 
						
							| 12 |  | fnfi |  | 
						
							| 13 | 11 12 | sylan |  | 
						
							| 14 | 13 | ex |  | 
						
							| 15 |  | cnvfi |  | 
						
							| 16 |  | diffi |  | 
						
							| 17 |  | snfi |  | 
						
							| 18 |  | xpfi |  | 
						
							| 19 | 16 17 18 | sylancl |  | 
						
							| 20 |  | unfi |  | 
						
							| 21 | 15 19 20 | syl2an |  | 
						
							| 22 |  | df-f1 |  | 
						
							| 23 | 22 | simprbi |  | 
						
							| 24 |  | vex |  | 
						
							| 25 | 24 | fconst |  | 
						
							| 26 |  | ffun |  | 
						
							| 27 | 25 26 | ax-mp |  | 
						
							| 28 | 23 27 | jctir |  | 
						
							| 29 |  | df-rn |  | 
						
							| 30 | 29 | eqcomi |  | 
						
							| 31 | 24 | snnz |  | 
						
							| 32 |  | dmxp |  | 
						
							| 33 | 31 32 | ax-mp |  | 
						
							| 34 | 30 33 | ineq12i |  | 
						
							| 35 |  | disjdif |  | 
						
							| 36 | 34 35 | eqtri |  | 
						
							| 37 |  | funun |  | 
						
							| 38 | 28 36 37 | sylancl |  | 
						
							| 39 | 38 | adantl |  | 
						
							| 40 |  | dmun |  | 
						
							| 41 | 29 | uneq1i |  | 
						
							| 42 | 33 | uneq2i |  | 
						
							| 43 | 40 41 42 | 3eqtr2i |  | 
						
							| 44 |  | f1f |  | 
						
							| 45 | 44 | frnd |  | 
						
							| 46 |  | undif |  | 
						
							| 47 | 45 46 | sylib |  | 
						
							| 48 | 43 47 | eqtrid |  | 
						
							| 49 | 48 | adantl |  | 
						
							| 50 |  | df-fn |  | 
						
							| 51 | 39 49 50 | sylanbrc |  | 
						
							| 52 |  | rnun |  | 
						
							| 53 |  | dfdm4 |  | 
						
							| 54 |  | f1dm |  | 
						
							| 55 | 53 54 | eqtr3id |  | 
						
							| 56 | 55 | uneq1d |  | 
						
							| 57 |  | xpeq1 |  | 
						
							| 58 |  | 0xp |  | 
						
							| 59 | 57 58 | eqtrdi |  | 
						
							| 60 | 59 | rneqd |  | 
						
							| 61 |  | rn0 |  | 
						
							| 62 | 60 61 | eqtrdi |  | 
						
							| 63 |  | 0ss |  | 
						
							| 64 | 62 63 | eqsstrdi |  | 
						
							| 65 | 64 | a1d |  | 
						
							| 66 |  | rnxp |  | 
						
							| 67 | 66 | adantr |  | 
						
							| 68 |  | snssi |  | 
						
							| 69 | 68 | adantl |  | 
						
							| 70 | 67 69 | eqsstrd |  | 
						
							| 71 | 70 | ex |  | 
						
							| 72 | 65 71 | pm2.61ine |  | 
						
							| 73 |  | ssequn2 |  | 
						
							| 74 | 72 73 | sylib |  | 
						
							| 75 | 56 74 | sylan9eqr |  | 
						
							| 76 | 52 75 | eqtrid |  | 
						
							| 77 |  | df-fo |  | 
						
							| 78 | 51 76 77 | sylanbrc |  | 
						
							| 79 |  | foeq1 |  | 
						
							| 80 | 79 | spcegv |  | 
						
							| 81 | 21 78 80 | syl2im |  | 
						
							| 82 | 81 | expcomd |  | 
						
							| 83 | 82 | com12 |  | 
						
							| 84 | 14 83 | syland |  | 
						
							| 85 | 84 | exlimiv |  | 
						
							| 86 | 10 85 | syl |  | 
						
							| 87 | 86 | adantl |  | 
						
							| 88 | 8 9 87 | mp2and |  | 
						
							| 89 | 88 | exlimdv |  | 
						
							| 90 | 7 89 | syl5 |  | 
						
							| 91 | 90 | 3impia |  | 
						
							| 92 | 91 | 3com23 |  |