Metamath Proof Explorer


Theorem fodomnum

Description: A version of fodom that doesn't require the Axiom of Choice ax-ac . (Contributed by Mario Carneiro, 28-Feb-2013) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fodomnum A dom card F : A onto B B A

Proof

Step Hyp Ref Expression
1 fornex A dom card F : A onto B B V
2 1 com12 F : A onto B A dom card B V
3 numacn B V A dom card A AC _ B
4 2 3 syli F : A onto B A dom card A AC _ B
5 4 com12 A dom card F : A onto B A AC _ B
6 fodomacn A AC _ B F : A onto B B A
7 5 6 syli A dom card F : A onto B B A