Step |
Hyp |
Ref |
Expression |
1 |
|
reldom |
|
2 |
1
|
brrelex2i |
|
3 |
2
|
adantl |
|
4 |
1
|
brrelex1i |
|
5 |
|
0sdomg |
|
6 |
|
n0 |
|
7 |
5 6
|
bitrdi |
|
8 |
4 7
|
syl |
|
9 |
8
|
biimpac |
|
10 |
|
brdomi |
|
11 |
10
|
adantl |
|
12 |
|
difexg |
|
13 |
|
snex |
|
14 |
|
xpexg |
|
15 |
12 13 14
|
sylancl |
|
16 |
|
vex |
|
17 |
16
|
cnvex |
|
18 |
15 17
|
jctil |
|
19 |
|
unexb |
|
20 |
18 19
|
sylib |
|
21 |
|
df-f1 |
|
22 |
21
|
simprbi |
|
23 |
|
vex |
|
24 |
23
|
fconst |
|
25 |
|
ffun |
|
26 |
24 25
|
ax-mp |
|
27 |
22 26
|
jctir |
|
28 |
|
df-rn |
|
29 |
28
|
eqcomi |
|
30 |
23
|
snnz |
|
31 |
|
dmxp |
|
32 |
30 31
|
ax-mp |
|
33 |
29 32
|
ineq12i |
|
34 |
|
disjdif |
|
35 |
33 34
|
eqtri |
|
36 |
|
funun |
|
37 |
27 35 36
|
sylancl |
|
38 |
37
|
adantl |
|
39 |
|
dmun |
|
40 |
28
|
uneq1i |
|
41 |
32
|
uneq2i |
|
42 |
39 40 41
|
3eqtr2i |
|
43 |
|
f1f |
|
44 |
43
|
frnd |
|
45 |
|
undif |
|
46 |
44 45
|
sylib |
|
47 |
42 46
|
eqtrid |
|
48 |
47
|
adantl |
|
49 |
|
df-fn |
|
50 |
38 48 49
|
sylanbrc |
|
51 |
|
rnun |
|
52 |
|
dfdm4 |
|
53 |
|
f1dm |
|
54 |
52 53
|
eqtr3id |
|
55 |
54
|
uneq1d |
|
56 |
|
xpeq1 |
|
57 |
|
0xp |
|
58 |
56 57
|
eqtrdi |
|
59 |
58
|
rneqd |
|
60 |
|
rn0 |
|
61 |
59 60
|
eqtrdi |
|
62 |
|
0ss |
|
63 |
61 62
|
eqsstrdi |
|
64 |
63
|
a1d |
|
65 |
|
rnxp |
|
66 |
65
|
adantr |
|
67 |
|
snssi |
|
68 |
67
|
adantl |
|
69 |
66 68
|
eqsstrd |
|
70 |
69
|
ex |
|
71 |
64 70
|
pm2.61ine |
|
72 |
|
ssequn2 |
|
73 |
71 72
|
sylib |
|
74 |
55 73
|
sylan9eqr |
|
75 |
51 74
|
eqtrid |
|
76 |
|
df-fo |
|
77 |
50 75 76
|
sylanbrc |
|
78 |
|
foeq1 |
|
79 |
78
|
spcegv |
|
80 |
20 77 79
|
syl2im |
|
81 |
80
|
expdimp |
|
82 |
81
|
exlimdv |
|
83 |
82
|
ex |
|
84 |
83
|
exlimdv |
|
85 |
3 9 11 84
|
syl3c |
|