| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reldom |  | 
						
							| 2 | 1 | brrelex2i |  | 
						
							| 3 | 2 | adantl |  | 
						
							| 4 | 1 | brrelex1i |  | 
						
							| 5 |  | 0sdomg |  | 
						
							| 6 |  | n0 |  | 
						
							| 7 | 5 6 | bitrdi |  | 
						
							| 8 | 4 7 | syl |  | 
						
							| 9 | 8 | biimpac |  | 
						
							| 10 |  | brdomi |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 |  | difexg |  | 
						
							| 13 |  | vsnex |  | 
						
							| 14 |  | xpexg |  | 
						
							| 15 | 12 13 14 | sylancl |  | 
						
							| 16 |  | vex |  | 
						
							| 17 | 16 | cnvex |  | 
						
							| 18 | 15 17 | jctil |  | 
						
							| 19 |  | unexb |  | 
						
							| 20 | 18 19 | sylib |  | 
						
							| 21 |  | df-f1 |  | 
						
							| 22 | 21 | simprbi |  | 
						
							| 23 |  | vex |  | 
						
							| 24 | 23 | fconst |  | 
						
							| 25 |  | ffun |  | 
						
							| 26 | 24 25 | ax-mp |  | 
						
							| 27 | 22 26 | jctir |  | 
						
							| 28 |  | df-rn |  | 
						
							| 29 | 28 | eqcomi |  | 
						
							| 30 | 23 | snnz |  | 
						
							| 31 |  | dmxp |  | 
						
							| 32 | 30 31 | ax-mp |  | 
						
							| 33 | 29 32 | ineq12i |  | 
						
							| 34 |  | disjdif |  | 
						
							| 35 | 33 34 | eqtri |  | 
						
							| 36 |  | funun |  | 
						
							| 37 | 27 35 36 | sylancl |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 |  | dmun |  | 
						
							| 40 | 28 | uneq1i |  | 
						
							| 41 | 32 | uneq2i |  | 
						
							| 42 | 39 40 41 | 3eqtr2i |  | 
						
							| 43 |  | f1f |  | 
						
							| 44 | 43 | frnd |  | 
						
							| 45 |  | undif |  | 
						
							| 46 | 44 45 | sylib |  | 
						
							| 47 | 42 46 | eqtrid |  | 
						
							| 48 | 47 | adantl |  | 
						
							| 49 |  | df-fn |  | 
						
							| 50 | 38 48 49 | sylanbrc |  | 
						
							| 51 |  | rnun |  | 
						
							| 52 |  | dfdm4 |  | 
						
							| 53 |  | f1dm |  | 
						
							| 54 | 52 53 | eqtr3id |  | 
						
							| 55 | 54 | uneq1d |  | 
						
							| 56 |  | xpeq1 |  | 
						
							| 57 |  | 0xp |  | 
						
							| 58 | 56 57 | eqtrdi |  | 
						
							| 59 | 58 | rneqd |  | 
						
							| 60 |  | rn0 |  | 
						
							| 61 | 59 60 | eqtrdi |  | 
						
							| 62 |  | 0ss |  | 
						
							| 63 | 61 62 | eqsstrdi |  | 
						
							| 64 | 63 | a1d |  | 
						
							| 65 |  | rnxp |  | 
						
							| 66 | 65 | adantr |  | 
						
							| 67 |  | snssi |  | 
						
							| 68 | 67 | adantl |  | 
						
							| 69 | 66 68 | eqsstrd |  | 
						
							| 70 | 69 | ex |  | 
						
							| 71 | 64 70 | pm2.61ine |  | 
						
							| 72 |  | ssequn2 |  | 
						
							| 73 | 71 72 | sylib |  | 
						
							| 74 | 55 73 | sylan9eqr |  | 
						
							| 75 | 51 74 | eqtrid |  | 
						
							| 76 |  | df-fo |  | 
						
							| 77 | 50 75 76 | sylanbrc |  | 
						
							| 78 |  | foeq1 |  | 
						
							| 79 | 78 | spcegv |  | 
						
							| 80 | 20 77 79 | syl2im |  | 
						
							| 81 | 80 | expdimp |  | 
						
							| 82 | 81 | exlimdv |  | 
						
							| 83 | 82 | ex |  | 
						
							| 84 | 83 | exlimdv |  | 
						
							| 85 | 3 9 11 84 | syl3c |  |