Metamath Proof Explorer


Theorem foelrn

Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011)

Ref Expression
Assertion foelrn F : A onto B C B x A C = F x

Proof

Step Hyp Ref Expression
1 dffo3 F : A onto B F : A B y B x A y = F x
2 1 simprbi F : A onto B y B x A y = F x
3 eqeq1 y = C y = F x C = F x
4 3 rexbidv y = C x A y = F x x A C = F x
5 4 rspccva y B x A y = F x C B x A C = F x
6 2 5 sylan F : A onto B C B x A C = F x