Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
foelrn
Next ⟩
foco2
Metamath Proof Explorer
Ascii
Unicode
Theorem
foelrn
Description:
Property of a surjective function.
(Contributed by
Jeff Madsen
, 4-Jan-2011)
Ref
Expression
Assertion
foelrn
⊢
F
:
A
⟶
onto
B
∧
C
∈
B
→
∃
x
∈
A
C
=
F
⁡
x
Proof
Step
Hyp
Ref
Expression
1
dffo3
⊢
F
:
A
⟶
onto
B
↔
F
:
A
⟶
B
∧
∀
y
∈
B
∃
x
∈
A
y
=
F
⁡
x
2
1
simprbi
⊢
F
:
A
⟶
onto
B
→
∀
y
∈
B
∃
x
∈
A
y
=
F
⁡
x
3
eqeq1
⊢
y
=
C
→
y
=
F
⁡
x
↔
C
=
F
⁡
x
4
3
rexbidv
⊢
y
=
C
→
∃
x
∈
A
y
=
F
⁡
x
↔
∃
x
∈
A
C
=
F
⁡
x
5
4
rspccva
⊢
∀
y
∈
B
∃
x
∈
A
y
=
F
⁡
x
∧
C
∈
B
→
∃
x
∈
A
C
=
F
⁡
x
6
2
5
sylan
⊢
F
:
A
⟶
onto
B
∧
C
∈
B
→
∃
x
∈
A
C
=
F
⁡
x