Metamath Proof Explorer


Theorem foelrnf

Description: Property of a surjective function. As foelrn but with less disjoint vars constraints. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis foelrnf.1 _ x F
Assertion foelrnf F : A onto B C B x A C = F x

Proof

Step Hyp Ref Expression
1 foelrnf.1 _ x F
2 1 dffo3f F : A onto B F : A B y B x A y = F x
3 2 simprbi F : A onto B y B x A y = F x
4 eqeq1 y = C y = F x C = F x
5 4 rexbidv y = C x A y = F x x A C = F x
6 5 rspccva y B x A y = F x C B x A C = F x
7 3 6 sylan F : A onto B C B x A C = F x