Metamath Proof Explorer


Theorem foelrni

Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020)

Ref Expression
Assertion foelrni F : A onto B Y B x A F x = Y

Proof

Step Hyp Ref Expression
1 forn F : A onto B ran F = B
2 1 eleq2d F : A onto B Y ran F Y B
3 fofn F : A onto B F Fn A
4 fvelrnb F Fn A Y ran F x A F x = Y
5 3 4 syl F : A onto B Y ran F x A F x = Y
6 2 5 bitr3d F : A onto B Y B x A F x = Y
7 6 biimpa F : A onto B Y B x A F x = Y