Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
foeq123d
Next ⟩
f1oeq123d
Metamath Proof Explorer
Ascii
Unicode
Theorem
foeq123d
Description:
Equality deduction for onto functions.
(Contributed by
Mario Carneiro
, 27-Jan-2017)
Ref
Expression
Hypotheses
f1eq123d.1
⊢
φ
→
F
=
G
f1eq123d.2
⊢
φ
→
A
=
B
f1eq123d.3
⊢
φ
→
C
=
D
Assertion
foeq123d
⊢
φ
→
F
:
A
⟶
onto
C
↔
G
:
B
⟶
onto
D
Proof
Step
Hyp
Ref
Expression
1
f1eq123d.1
⊢
φ
→
F
=
G
2
f1eq123d.2
⊢
φ
→
A
=
B
3
f1eq123d.3
⊢
φ
→
C
=
D
4
foeq1
⊢
F
=
G
→
F
:
A
⟶
onto
C
↔
G
:
A
⟶
onto
C
5
1
4
syl
⊢
φ
→
F
:
A
⟶
onto
C
↔
G
:
A
⟶
onto
C
6
foeq2
⊢
A
=
B
→
G
:
A
⟶
onto
C
↔
G
:
B
⟶
onto
C
7
2
6
syl
⊢
φ
→
G
:
A
⟶
onto
C
↔
G
:
B
⟶
onto
C
8
foeq3
⊢
C
=
D
→
G
:
B
⟶
onto
C
↔
G
:
B
⟶
onto
D
9
3
8
syl
⊢
φ
→
G
:
B
⟶
onto
C
↔
G
:
B
⟶
onto
D
10
5
7
9
3bitrd
⊢
φ
→
F
:
A
⟶
onto
C
↔
G
:
B
⟶
onto
D