Metamath Proof Explorer


Theorem foeq123d

Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses f1eq123d.1 φ F = G
f1eq123d.2 φ A = B
f1eq123d.3 φ C = D
Assertion foeq123d φ F : A onto C G : B onto D

Proof

Step Hyp Ref Expression
1 f1eq123d.1 φ F = G
2 f1eq123d.2 φ A = B
3 f1eq123d.3 φ C = D
4 foeq1 F = G F : A onto C G : A onto C
5 1 4 syl φ F : A onto C G : A onto C
6 foeq2 A = B G : A onto C G : B onto C
7 2 6 syl φ G : A onto C G : B onto C
8 foeq3 C = D G : B onto C G : B onto D
9 3 8 syl φ G : B onto C G : B onto D
10 5 7 9 3bitrd φ F : A onto C G : B onto D