Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|
2 |
|
fof |
|
3 |
1 2
|
syl |
|
4 |
|
domnsym |
|
5 |
|
simp3 |
|
6 |
|
simp2 |
|
7 |
|
enfii |
|
8 |
5 6 7
|
syl2anc |
|
9 |
8
|
ad2antrr |
|
10 |
|
difssd |
|
11 |
|
simplrr |
|
12 |
|
neldifsn |
|
13 |
|
nelne1 |
|
14 |
11 12 13
|
sylancl |
|
15 |
14
|
necomd |
|
16 |
|
df-pss |
|
17 |
10 15 16
|
sylanbrc |
|
18 |
|
php3 |
|
19 |
9 17 18
|
syl2anc |
|
20 |
6
|
ad2antrr |
|
21 |
|
sdomentr |
|
22 |
19 20 21
|
syl2anc |
|
23 |
4 22
|
nsyl3 |
|
24 |
8
|
adantr |
|
25 |
|
difss |
|
26 |
|
ssfi |
|
27 |
24 25 26
|
sylancl |
|
28 |
3
|
adantr |
|
29 |
|
fssres |
|
30 |
28 25 29
|
sylancl |
|
31 |
1
|
adantr |
|
32 |
|
foelrn |
|
33 |
31 32
|
sylan |
|
34 |
|
simprll |
|
35 |
|
simprrr |
|
36 |
|
eldifsn |
|
37 |
34 35 36
|
sylanbrc |
|
38 |
|
simprrl |
|
39 |
38
|
eqcomd |
|
40 |
|
fveq2 |
|
41 |
40
|
rspceeqv |
|
42 |
37 39 41
|
syl2anc |
|
43 |
|
fveqeq2 |
|
44 |
43
|
rexbidv |
|
45 |
42 44
|
syl5ibrcom |
|
46 |
45
|
adantr |
|
47 |
46
|
imp |
|
48 |
|
eldifsn |
|
49 |
|
eqid |
|
50 |
|
fveq2 |
|
51 |
50
|
rspceeqv |
|
52 |
49 51
|
mpan2 |
|
53 |
48 52
|
sylbir |
|
54 |
53
|
adantll |
|
55 |
47 54
|
pm2.61dane |
|
56 |
|
fvres |
|
57 |
56
|
eqeq2d |
|
58 |
57
|
rexbiia |
|
59 |
|
eqeq1 |
|
60 |
59
|
rexbidv |
|
61 |
58 60
|
bitrid |
|
62 |
55 61
|
syl5ibrcom |
|
63 |
62
|
rexlimdva |
|
64 |
63
|
imp |
|
65 |
33 64
|
syldan |
|
66 |
65
|
ralrimiva |
|
67 |
|
dffo3 |
|
68 |
30 66 67
|
sylanbrc |
|
69 |
|
fodomfi |
|
70 |
27 68 69
|
syl2anc |
|
71 |
70
|
anassrs |
|
72 |
71
|
expr |
|
73 |
72
|
necon1bd |
|
74 |
23 73
|
mpd |
|
75 |
74
|
ex |
|
76 |
75
|
ralrimivva |
|
77 |
|
dff13 |
|
78 |
3 76 77
|
sylanbrc |
|
79 |
|
df-f1o |
|
80 |
78 1 79
|
sylanbrc |
|