Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
foima
Next ⟩
dffn4
Metamath Proof Explorer
Ascii
Unicode
Theorem
foima
Description:
The image of the domain of an onto function.
(Contributed by
NM
, 29-Nov-2002)
Ref
Expression
Assertion
foima
⊢
F
:
A
⟶
onto
B
→
F
A
=
B
Proof
Step
Hyp
Ref
Expression
1
imadmrn
⊢
F
dom
⁡
F
=
ran
⁡
F
2
fof
⊢
F
:
A
⟶
onto
B
→
F
:
A
⟶
B
3
2
fdmd
⊢
F
:
A
⟶
onto
B
→
dom
⁡
F
=
A
4
3
imaeq2d
⊢
F
:
A
⟶
onto
B
→
F
dom
⁡
F
=
F
A
5
forn
⊢
F
:
A
⟶
onto
B
→
ran
⁡
F
=
B
6
1
4
5
3eqtr3a
⊢
F
:
A
⟶
onto
B
→
F
A
=
B