Metamath Proof Explorer


Theorem foima

Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002)

Ref Expression
Assertion foima F : A onto B F A = B

Proof

Step Hyp Ref Expression
1 imadmrn F dom F = ran F
2 fof F : A onto B F : A B
3 2 fdmd F : A onto B dom F = A
4 3 imaeq2d F : A onto B F dom F = F A
5 forn F : A onto B ran F = B
6 1 4 5 3eqtr3a F : A onto B F A = B