Metamath Proof Explorer


Theorem fompt

Description: Express being onto for a mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis fompt.1 F = x A C
Assertion fompt F : A onto B x A C B y B x A y = C

Proof

Step Hyp Ref Expression
1 fompt.1 F = x A C
2 fof F : A onto B F : A B
3 1 fmpt x A C B F : A B
4 2 3 sylibr F : A onto B x A C B
5 nfmpt1 _ x x A C
6 1 5 nfcxfr _ x F
7 6 foelrnf F : A onto B y B x A y = F x
8 nfcv _ x A
9 nfcv _ x B
10 6 8 9 nffo x F : A onto B
11 simpr F : A onto B x A y = F x y = F x
12 simpr F : A onto B x A x A
13 4 r19.21bi F : A onto B x A C B
14 1 fvmpt2 x A C B F x = C
15 12 13 14 syl2anc F : A onto B x A F x = C
16 15 adantr F : A onto B x A y = F x F x = C
17 11 16 eqtrd F : A onto B x A y = F x y = C
18 17 exp31 F : A onto B x A y = F x y = C
19 10 18 reximdai F : A onto B x A y = F x x A y = C
20 19 adantr F : A onto B y B x A y = F x x A y = C
21 7 20 mpd F : A onto B y B x A y = C
22 21 ralrimiva F : A onto B y B x A y = C
23 4 22 jca F : A onto B x A C B y B x A y = C
24 3 biimpi x A C B F : A B
25 24 adantr x A C B y B x A y = C F : A B
26 nfv y x A C B
27 nfra1 y y B x A y = C
28 26 27 nfan y x A C B y B x A y = C
29 simpll x A C B y B x A y = C y B x A C B
30 rspa y B x A y = C y B x A y = C
31 30 adantll x A C B y B x A y = C y B x A y = C
32 nfra1 x x A C B
33 simp3 x A C B x A y = C y = C
34 simpr x A C B x A x A
35 rspa x A C B x A C B
36 34 35 14 syl2anc x A C B x A F x = C
37 36 eqcomd x A C B x A C = F x
38 37 3adant3 x A C B x A y = C C = F x
39 33 38 eqtrd x A C B x A y = C y = F x
40 39 3exp x A C B x A y = C y = F x
41 32 40 reximdai x A C B x A y = C x A y = F x
42 29 31 41 sylc x A C B y B x A y = C y B x A y = F x
43 28 42 ralrimia x A C B y B x A y = C y B x A y = F x
44 6 dffo3f F : A onto B F : A B y B x A y = F x
45 25 43 44 sylanbrc x A C B y B x A y = C F : A onto B
46 23 45 impbii F : A onto B x A C B y B x A y = C