Step |
Hyp |
Ref |
Expression |
1 |
|
fompt.1 |
|
2 |
|
nfmpt1 |
|
3 |
1 2
|
nfcxfr |
|
4 |
3
|
dffo3f |
|
5 |
4
|
simplbi |
|
6 |
1
|
fmpt |
|
7 |
6
|
bicomi |
|
8 |
7
|
biimpi |
|
9 |
5 8
|
syl |
|
10 |
3
|
foelrnf |
|
11 |
|
nfcv |
|
12 |
|
nfcv |
|
13 |
3 11 12
|
nffo |
|
14 |
|
simpr |
|
15 |
|
simpr |
|
16 |
9
|
r19.21bi |
|
17 |
1
|
fvmpt2 |
|
18 |
15 16 17
|
syl2anc |
|
19 |
18
|
adantr |
|
20 |
14 19
|
eqtrd |
|
21 |
20
|
ex |
|
22 |
21
|
ex |
|
23 |
13 22
|
reximdai |
|
24 |
23
|
adantr |
|
25 |
10 24
|
mpd |
|
26 |
25
|
ralrimiva |
|
27 |
9 26
|
jca |
|
28 |
6
|
biimpi |
|
29 |
28
|
adantr |
|
30 |
|
nfv |
|
31 |
|
nfra1 |
|
32 |
30 31
|
nfan |
|
33 |
|
simpll |
|
34 |
|
rspa |
|
35 |
34
|
adantll |
|
36 |
|
nfra1 |
|
37 |
|
simp3 |
|
38 |
|
simpr |
|
39 |
|
rspa |
|
40 |
38 39 17
|
syl2anc |
|
41 |
40
|
eqcomd |
|
42 |
41
|
3adant3 |
|
43 |
37 42
|
eqtrd |
|
44 |
43
|
3exp |
|
45 |
36 44
|
reximdai |
|
46 |
45
|
imp |
|
47 |
33 35 46
|
syl2anc |
|
48 |
47
|
ex |
|
49 |
32 48
|
ralrimi |
|
50 |
29 49
|
jca |
|
51 |
50 4
|
sylibr |
|
52 |
27 51
|
impbii |
|