Step |
Hyp |
Ref |
Expression |
1 |
|
isperp.p |
|
2 |
|
isperp.d |
|
3 |
|
isperp.i |
|
4 |
|
isperp.l |
|
5 |
|
isperp.g |
|
6 |
|
isperp.a |
|
7 |
|
foot.x |
|
8 |
|
foot.y |
|
9 |
|
eqid |
|
10 |
5
|
ad3antrrr |
|
11 |
10
|
ad2antrr |
|
12 |
11
|
ad2antrr |
|
13 |
12
|
ad2antrr |
|
14 |
13
|
ad2antrr |
|
15 |
14
|
ad2antrr |
|
16 |
|
eqid |
|
17 |
7
|
ad3antrrr |
|
18 |
17
|
ad2antrr |
|
19 |
18
|
ad6antr |
|
20 |
19
|
ad2antrr |
|
21 |
|
simplr |
|
22 |
|
simp-4r |
|
23 |
22
|
ad2antrr |
|
24 |
23
|
ad2antrr |
|
25 |
24
|
ad2antrr |
|
26 |
|
simprr |
|
27 |
26
|
eqcomd |
|
28 |
1 2 3 4 9 15 16 20 21 25 27
|
midexlem |
|
29 |
15
|
adantr |
|
30 |
25
|
adantr |
|
31 |
|
simp-6r |
|
32 |
31
|
adantr |
|
33 |
|
simprl |
|
34 |
|
simp-4r |
|
35 |
34
|
ad4antr |
|
36 |
35
|
adantr |
|
37 |
|
simp-5r |
|
38 |
37
|
simprd |
|
39 |
38
|
eqcomd |
|
40 |
39
|
adantr |
|
41 |
|
simp-7r |
|
42 |
41
|
adantr |
|
43 |
|
simpllr |
|
44 |
43
|
ad2antrr |
|
45 |
44
|
ad2antrr |
|
46 |
45
|
ad2antrr |
|
47 |
46
|
ad4antr |
|
48 |
|
simplr |
|
49 |
48
|
ad10antr |
|
50 |
|
simp-11r |
|
51 |
50
|
simprd |
|
52 |
51
|
necomd |
|
53 |
|
simp-9r |
|
54 |
53
|
simpld |
|
55 |
1 3 4 15 49 47 25 52 54
|
btwnlng3 |
|
56 |
1 3 4 15 47 49 25 51 55
|
lncom |
|
57 |
50
|
simpld |
|
58 |
56 57
|
eleqtrrd |
|
59 |
58
|
adantr |
|
60 |
8
|
ad3antrrr |
|
61 |
60
|
ad10antr |
|
62 |
61
|
adantr |
|
63 |
|
nelne2 |
|
64 |
59 62 63
|
syl2anc |
|
65 |
64
|
necomd |
|
66 |
42 65
|
eqnetrrd |
|
67 |
|
eqid |
|
68 |
1 2 3 4 9 29 36 67 30
|
mirinv |
|
69 |
68
|
necon3bid |
|
70 |
66 69
|
mpbid |
|
71 |
70
|
necomd |
|
72 |
1 2 3 29 30 36 30 32 40 71
|
tgcgrneq |
|
73 |
72
|
necomd |
|
74 |
|
eqid |
|
75 |
|
simp-4r |
|
76 |
75
|
adantr |
|
77 |
|
simp-4r |
|
78 |
|
simplr |
|
79 |
1 2 3 4 9 14 77 74 78
|
mircl |
|
80 |
79
|
ad3antrrr |
|
81 |
20
|
adantr |
|
82 |
|
simpllr |
|
83 |
1 2 3 4 9 29 36 67 30
|
mirbtwn |
|
84 |
42
|
oveq1d |
|
85 |
83 84
|
eleqtrrd |
|
86 |
|
simpllr |
|
87 |
86
|
simpld |
|
88 |
87
|
adantr |
|
89 |
1 2 3 29 81 36 30 76 70 85 88
|
tgbtwnouttr2 |
|
90 |
1 2 3 29 81 30 76 89
|
tgbtwncom |
|
91 |
|
simplrl |
|
92 |
|
eqid |
|
93 |
53
|
simprd |
|
94 |
41
|
oveq2d |
|
95 |
93 94
|
eqtrd |
|
96 |
1 2 3 4 9 15 47 35 25
|
israg |
|
97 |
95 96
|
mpbird |
|
98 |
86
|
simprd |
|
99 |
1 2 3 15 47 25 47 20 93
|
tgcgrcomlr |
|
100 |
98 99
|
eqtr2d |
|
101 |
1 3 4 15 47 49 51
|
tglinerflx1 |
|
102 |
101 57
|
eleqtrrd |
|
103 |
|
nelne2 |
|
104 |
102 61 103
|
syl2anc |
|
105 |
104
|
necomd |
|
106 |
1 2 3 15 20 47 25 75 100 105
|
tgcgrneq |
|
107 |
106
|
necomd |
|
108 |
1 2 3 15 35 25 75 87
|
tgbtwncom |
|
109 |
37
|
simpld |
|
110 |
1 2 3 15 25 75 25 47 98
|
tgcgrcomlr |
|
111 |
1 2 3 15 75 47
|
axtgcgrrflx |
|
112 |
98
|
eqcomd |
|
113 |
1 2 3 15 75 25 35 47 25 31 47 75 107 108 109 110 39 111 112
|
axtg5seg |
|
114 |
1 2 3 15 35 47 31 75 113
|
tgcgrcomlr |
|
115 |
1 2 3 15 25 35 25 31 39
|
tgcgrcomlr |
|
116 |
1 2 92 15 47 35 25 75 31 25 114 115 112
|
trgcgr |
|
117 |
1 2 3 4 9 15 47 35 25 92 75 31 25 97 116
|
ragcgr |
|
118 |
1 2 3 4 9 15 75 31 25 117
|
ragcom |
|
119 |
1 2 3 4 9 15 25 31 75
|
israg |
|
120 |
118 119
|
mpbid |
|
121 |
120
|
adantr |
|
122 |
27
|
adantr |
|
123 |
|
eqidd |
|
124 |
|
simprr |
|
125 |
1 2 3 4 9 29 74 16 76 80 30 81 82 32 33 90 91 121 122 123 124
|
krippen |
|
126 |
1 3 4 29 32 30 33 73 125
|
btwnlng3 |
|
127 |
1 3 4 29 30 32 33 72 126
|
lncom |
|
128 |
6
|
ad5antr |
|
129 |
128
|
ad9antr |
|
130 |
47
|
adantr |
|
131 |
93
|
adantr |
|
132 |
131
|
eqcomd |
|
133 |
104
|
adantr |
|
134 |
1 2 3 29 130 81 130 30 132 133
|
tgcgrneq |
|
135 |
109
|
adantr |
|
136 |
1 3 4 29 130 30 32 134 135
|
btwnlng3 |
|
137 |
102
|
adantr |
|
138 |
1 3 4 29 130 30 134 134 129 137 59
|
tglinethru |
|
139 |
136 138
|
eleqtrrd |
|
140 |
1 3 4 29 30 32 72 72 129 59 139
|
tglinethru |
|
141 |
127 140
|
eleqtrrd |
|
142 |
|
nelne2 |
|
143 |
141 62 142
|
syl2anc |
|
144 |
143
|
necomd |
|
145 |
1 3 4 29 81 33 144
|
tgelrnln |
|
146 |
1 3 4 29 81 33 144
|
tglinerflx2 |
|
147 |
146 141
|
elind |
|
148 |
1 3 4 29 81 33 144
|
tglinerflx1 |
|
149 |
29
|
adantr |
|
150 |
130
|
adantr |
|
151 |
30
|
adantr |
|
152 |
36
|
adantr |
|
153 |
81
|
adantr |
|
154 |
|
eqidd |
|
155 |
|
simpr |
|
156 |
|
eqidd |
|
157 |
154 155 156
|
s3eqd |
|
158 |
33
|
adantr |
|
159 |
32
|
adantr |
|
160 |
107
|
adantr |
|
161 |
1 2 3 29 30 76 30 80 121
|
tgcgrcomlr |
|
162 |
1 2 3 4 9 29 32 74 76
|
mircgr |
|
163 |
162
|
eqcomd |
|
164 |
1 2 3 29 32 76 32 80 163
|
tgcgrcomlr |
|
165 |
|
eqidd |
|
166 |
1 2 3 29 76 30 81 80 30 82 32 32 160 90 91 161 122 164 165
|
axtg5seg |
|
167 |
1 2 3 29 81 32 82 32 166
|
tgcgrcomlr |
|
168 |
124
|
oveq2d |
|
169 |
167 168
|
eqtrd |
|
170 |
1 2 3 4 9 29 32 33 81
|
israg |
|
171 |
169 170
|
mpbird |
|
172 |
171
|
adantr |
|
173 |
73
|
adantr |
|
174 |
173 155
|
neeqtrd |
|
175 |
132
|
adantr |
|
176 |
133
|
adantr |
|
177 |
1 2 3 149 150 153 150 151 175 176
|
tgcgrneq |
|
178 |
177
|
necomd |
|
179 |
136
|
adantr |
|
180 |
1 3 4 149 151 150 159 178 179
|
lncom |
|
181 |
155
|
oveq1d |
|
182 |
180 181
|
eleqtrd |
|
183 |
182
|
orcd |
|
184 |
1 2 3 4 9 149 159 158 153 150 172 174 183
|
ragcol |
|
185 |
1 2 3 4 9 149 150 158 153 184
|
ragcom |
|
186 |
157 185
|
eqeltrd |
|
187 |
65
|
adantr |
|
188 |
1 2 3 29 81 36 30 85
|
tgbtwncom |
|
189 |
1 4 3 29 30 36 81 188
|
btwncolg3 |
|
190 |
189
|
adantr |
|
191 |
1 2 3 4 9 149 153 151 150 152 186 187 190
|
ragcol |
|
192 |
1 2 3 4 9 149 152 151 150 191
|
ragcom |
|
193 |
97
|
ad2antrr |
|
194 |
1 2 3 4 9 149 150 151 152 192 193
|
ragflat |
|
195 |
71
|
adantr |
|
196 |
195
|
neneqd |
|
197 |
194 196
|
pm2.65da |
|
198 |
197
|
neqned |
|
199 |
124
|
oveq2d |
|
200 |
122 199
|
eqtrd |
|
201 |
1 2 3 4 9 29 30 33 81
|
israg |
|
202 |
200 201
|
mpbird |
|
203 |
1 2 3 4 9 29 30 33 81 202
|
ragcom |
|
204 |
1 2 3 4 29 145 129 147 148 59 144 198 203
|
ragperp |
|
205 |
28 141 204
|
reximssdv |
|
206 |
1 2 3 14 79 24 24 19
|
axtgsegcon |
|
207 |
205 206
|
r19.29a |
|
208 |
1 2 3 13 34 23 23 46
|
axtgsegcon |
|
209 |
207 208
|
r19.29a |
|
210 |
|
simplr |
|
211 |
1 2 3 12 45 22 22 210
|
axtgsegcon |
|
212 |
209 211
|
r19.29a |
|
213 |
|
simplr |
|
214 |
|
simprr |
|
215 |
1 2 3 4 9 11 67 213 18 44 214
|
midexlem |
|
216 |
212 215
|
r19.29a |
|
217 |
1 2 3 10 48 43 43 17
|
axtgsegcon |
|
218 |
216 217
|
r19.29a |
|
219 |
1 3 4 5 6
|
tgisline |
|
220 |
218 219
|
r19.29vva |
|