Metamath Proof Explorer


Theorem footexlem2

Description: Lemma for footex . (Contributed by Thierry Arnoux, 19-Oct-2019) (Revised by Thierry Arnoux, 1-Jul-2023)

Ref Expression
Hypotheses isperp.p P = Base G
isperp.d - ˙ = dist G
isperp.i I = Itv G
isperp.l L = Line 𝒢 G
isperp.g φ G 𝒢 Tarski
isperp.a φ A ran L
foot.x φ C P
foot.y φ ¬ C A
footexlem.e φ E P
footexlem.f φ F P
footexlem.r φ R P
footexlem.x φ X P
footexlem.y φ Y P
footexlem.z φ Z P
footexlem.d φ D P
footexlem.1 φ A = E L F
footexlem.2 φ E F
footexlem.3 φ E F I Y
footexlem.4 φ E - ˙ Y = E - ˙ C
footexlem.5 φ C = pInv 𝒢 G R Y
footexlem.6 φ Y E I Z
footexlem.7 φ Y - ˙ Z = Y - ˙ R
footexlem.q φ Q P
footexlem.8 φ Y R I Q
footexlem.9 φ Y - ˙ Q = Y - ˙ E
footexlem.10 φ Y pInv 𝒢 G Z Q I D
footexlem.11 φ Y - ˙ D = Y - ˙ C
footexlem.12 φ D = pInv 𝒢 G X C
Assertion footexlem2 φ C L X 𝒢 G A

Proof

Step Hyp Ref Expression
1 isperp.p P = Base G
2 isperp.d - ˙ = dist G
3 isperp.i I = Itv G
4 isperp.l L = Line 𝒢 G
5 isperp.g φ G 𝒢 Tarski
6 isperp.a φ A ran L
7 foot.x φ C P
8 foot.y φ ¬ C A
9 footexlem.e φ E P
10 footexlem.f φ F P
11 footexlem.r φ R P
12 footexlem.x φ X P
13 footexlem.y φ Y P
14 footexlem.z φ Z P
15 footexlem.d φ D P
16 footexlem.1 φ A = E L F
17 footexlem.2 φ E F
18 footexlem.3 φ E F I Y
19 footexlem.4 φ E - ˙ Y = E - ˙ C
20 footexlem.5 φ C = pInv 𝒢 G R Y
21 footexlem.6 φ Y E I Z
22 footexlem.7 φ Y - ˙ Z = Y - ˙ R
23 footexlem.q φ Q P
24 footexlem.8 φ Y R I Q
25 footexlem.9 φ Y - ˙ Q = Y - ˙ E
26 footexlem.10 φ Y pInv 𝒢 G Z Q I D
27 footexlem.11 φ Y - ˙ D = Y - ˙ C
28 footexlem.12 φ D = pInv 𝒢 G X C
29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 footexlem1 φ X A
30 nelne2 X A ¬ C A X C
31 29 8 30 syl2anc φ X C
32 31 necomd φ C X
33 1 3 4 5 7 12 32 tgelrnln φ C L X ran L
34 1 3 4 5 7 12 32 tglinerflx2 φ X C L X
35 34 29 elind φ X C L X A
36 1 3 4 5 7 12 32 tglinerflx1 φ C C L X
37 17 necomd φ F E
38 1 3 4 5 10 9 13 37 18 btwnlng3 φ Y F L E
39 1 3 4 5 9 10 13 17 38 lncom φ Y E L F
40 39 16 eleqtrrd φ Y A
41 eqid pInv 𝒢 G = pInv 𝒢 G
42 5 adantr φ Y = X G 𝒢 Tarski
43 9 adantr φ Y = X E P
44 13 adantr φ Y = X Y P
45 11 adantr φ Y = X R P
46 7 adantr φ Y = X C P
47 eqidd φ Y = X C = C
48 simpr φ Y = X Y = X
49 eqidd φ Y = X E = E
50 47 48 49 s3eqd φ Y = X ⟨“ CYE ”⟩ = ⟨“ CXE ”⟩
51 12 adantr φ Y = X X P
52 14 adantr φ Y = X Z P
53 eqid pInv 𝒢 G Z = pInv 𝒢 G Z
54 1 2 3 4 41 5 14 53 23 mircl φ pInv 𝒢 G Z Q P
55 1 2 3 5 9 13 9 7 19 tgcgrcomlr φ Y - ˙ E = C - ˙ E
56 25 55 eqtr2d φ C - ˙ E = Y - ˙ Q
57 1 3 4 5 9 10 17 tglinerflx1 φ E E L F
58 57 16 eleqtrrd φ E A
59 nelne2 E A ¬ C A E C
60 58 8 59 syl2anc φ E C
61 60 necomd φ C E
62 1 2 3 5 7 9 13 23 56 61 tgcgrneq φ Y Q
63 62 necomd φ Q Y
64 nelne2 Y A ¬ C A Y C
65 40 8 64 syl2anc φ Y C
66 65 necomd φ C Y
67 20 66 eqnetrrd φ pInv 𝒢 G R Y Y
68 eqid pInv 𝒢 G R = pInv 𝒢 G R
69 1 2 3 4 41 5 11 68 13 mirinv φ pInv 𝒢 G R Y = Y R = Y
70 69 necon3bid φ pInv 𝒢 G R Y Y R Y
71 67 70 mpbid φ R Y
72 1 2 3 4 41 5 11 68 13 mirbtwn φ R pInv 𝒢 G R Y I Y
73 20 oveq1d φ C I Y = pInv 𝒢 G R Y I Y
74 72 73 eleqtrrd φ R C I Y
75 1 2 3 5 7 11 13 23 71 74 24 tgbtwnouttr2 φ Y C I Q
76 1 2 3 5 7 13 23 75 tgbtwncom φ Y Q I C
77 eqid 𝒢 G = 𝒢 G
78 20 oveq2d φ E - ˙ C = E - ˙ pInv 𝒢 G R Y
79 19 78 eqtrd φ E - ˙ Y = E - ˙ pInv 𝒢 G R Y
80 1 2 3 4 41 5 9 11 13 israg φ ⟨“ ERY ”⟩ 𝒢 G E - ˙ Y = E - ˙ pInv 𝒢 G R Y
81 79 80 mpbird φ ⟨“ ERY ”⟩ 𝒢 G
82 1 2 3 5 11 13 23 24 tgbtwncom φ Y Q I R
83 1 2 3 5 13 23 13 9 25 tgcgrcomlr φ Q - ˙ Y = E - ˙ Y
84 22 eqcomd φ Y - ˙ R = Y - ˙ Z
85 1 2 3 5 23 9 axtgcgrrflx φ Q - ˙ E = E - ˙ Q
86 25 eqcomd φ Y - ˙ E = Y - ˙ Q
87 1 2 3 5 23 13 11 9 13 14 9 23 63 82 21 83 84 85 86 axtg5seg φ R - ˙ E = Z - ˙ Q
88 1 2 3 5 11 9 14 23 87 tgcgrcomlr φ E - ˙ R = Q - ˙ Z
89 1 2 3 5 13 11 13 14 84 tgcgrcomlr φ R - ˙ Y = Z - ˙ Y
90 1 2 77 5 9 11 13 23 14 13 88 89 86 trgcgr φ ⟨“ ERY ”⟩ 𝒢 G ⟨“ QZY ”⟩
91 1 2 3 4 41 5 9 11 13 77 23 14 13 81 90 ragcgr φ ⟨“ QZY ”⟩ 𝒢 G
92 1 2 3 4 41 5 23 14 13 91 ragcom φ ⟨“ YZQ ”⟩ 𝒢 G
93 1 2 3 4 41 5 13 14 23 israg φ ⟨“ YZQ ”⟩ 𝒢 G Y - ˙ Q = Y - ˙ pInv 𝒢 G Z Q
94 92 93 mpbid φ Y - ˙ Q = Y - ˙ pInv 𝒢 G Z Q
95 1 2 3 5 13 23 13 54 94 tgcgrcomlr φ Q - ˙ Y = pInv 𝒢 G Z Q - ˙ Y
96 27 eqcomd φ Y - ˙ C = Y - ˙ D
97 1 2 3 4 41 5 14 53 23 mircgr φ Z - ˙ pInv 𝒢 G Z Q = Z - ˙ Q
98 97 eqcomd φ Z - ˙ Q = Z - ˙ pInv 𝒢 G Z Q
99 1 2 3 5 14 23 14 54 98 tgcgrcomlr φ Q - ˙ Z = pInv 𝒢 G Z Q - ˙ Z
100 eqidd φ Y - ˙ Z = Y - ˙ Z
101 1 2 3 5 23 13 7 54 13 15 14 14 63 76 26 95 96 99 100 axtg5seg φ C - ˙ Z = D - ˙ Z
102 1 2 3 5 7 14 15 14 101 tgcgrcomlr φ Z - ˙ C = Z - ˙ D
103 28 oveq2d φ Z - ˙ D = Z - ˙ pInv 𝒢 G X C
104 102 103 eqtrd φ Z - ˙ C = Z - ˙ pInv 𝒢 G X C
105 1 2 3 4 41 5 14 12 7 israg φ ⟨“ ZXC ”⟩ 𝒢 G Z - ˙ C = Z - ˙ pInv 𝒢 G X C
106 104 105 mpbird φ ⟨“ ZXC ”⟩ 𝒢 G
107 106 adantr φ Y = X ⟨“ ZXC ”⟩ 𝒢 G
108 71 necomd φ Y R
109 1 2 3 5 13 11 13 14 84 108 tgcgrneq φ Y Z
110 109 necomd φ Z Y
111 110 adantr φ Y = X Z Y
112 111 48 neeqtrd φ Y = X Z X
113 19 eqcomd φ E - ˙ C = E - ˙ Y
114 113 adantr φ Y = X E - ˙ C = E - ˙ Y
115 60 adantr φ Y = X E C
116 1 2 3 42 43 46 43 44 114 115 tgcgrneq φ Y = X E Y
117 116 necomd φ Y = X Y E
118 1 2 3 5 9 7 9 13 113 60 tgcgrneq φ E Y
119 1 3 4 5 9 13 14 118 21 btwnlng3 φ Z E L Y
120 119 adantr φ Y = X Z E L Y
121 1 3 4 42 44 43 52 117 120 lncom φ Y = X Z Y L E
122 48 oveq1d φ Y = X Y L E = X L E
123 121 122 eleqtrd φ Y = X Z X L E
124 123 orcd φ Y = X Z X L E X = E
125 1 2 3 4 41 42 52 51 46 43 107 112 124 ragcol φ Y = X ⟨“ EXC ”⟩ 𝒢 G
126 1 2 3 4 41 42 43 51 46 125 ragcom φ Y = X ⟨“ CXE ”⟩ 𝒢 G
127 50 126 eqeltrd φ Y = X ⟨“ CYE ”⟩ 𝒢 G
128 66 adantr φ Y = X C Y
129 1 2 3 5 7 11 13 74 tgbtwncom φ R Y I C
130 1 4 3 5 13 11 7 129 btwncolg3 φ C Y L R Y = R
131 130 adantr φ Y = X C Y L R Y = R
132 1 2 3 4 41 42 46 44 43 45 127 128 131 ragcol φ Y = X ⟨“ RYE ”⟩ 𝒢 G
133 1 2 3 4 41 42 45 44 43 132 ragcom φ Y = X ⟨“ EYR ”⟩ 𝒢 G
134 81 adantr φ Y = X ⟨“ ERY ”⟩ 𝒢 G
135 1 2 3 4 41 42 43 44 45 133 134 ragflat φ Y = X Y = R
136 108 adantr φ Y = X Y R
137 136 neneqd φ Y = X ¬ Y = R
138 135 137 pm2.65da φ ¬ Y = X
139 138 neqned φ Y X
140 28 oveq2d φ Y - ˙ D = Y - ˙ pInv 𝒢 G X C
141 96 140 eqtrd φ Y - ˙ C = Y - ˙ pInv 𝒢 G X C
142 1 2 3 4 41 5 13 12 7 israg φ ⟨“ YXC ”⟩ 𝒢 G Y - ˙ C = Y - ˙ pInv 𝒢 G X C
143 141 142 mpbird φ ⟨“ YXC ”⟩ 𝒢 G
144 1 2 3 4 41 5 13 12 7 143 ragcom φ ⟨“ CXY ”⟩ 𝒢 G
145 1 2 3 4 5 33 6 35 36 40 32 139 144 ragperp φ C L X 𝒢 G A