Step |
Hyp |
Ref |
Expression |
1 |
|
isperp.p |
|
2 |
|
isperp.d |
|
3 |
|
isperp.i |
|
4 |
|
isperp.l |
|
5 |
|
isperp.g |
|
6 |
|
isperp.a |
|
7 |
|
foot.x |
|
8 |
|
foot.y |
|
9 |
|
footexlem.e |
|
10 |
|
footexlem.f |
|
11 |
|
footexlem.r |
|
12 |
|
footexlem.x |
|
13 |
|
footexlem.y |
|
14 |
|
footexlem.z |
|
15 |
|
footexlem.d |
|
16 |
|
footexlem.1 |
|
17 |
|
footexlem.2 |
|
18 |
|
footexlem.3 |
|
19 |
|
footexlem.4 |
|
20 |
|
footexlem.5 |
|
21 |
|
footexlem.6 |
|
22 |
|
footexlem.7 |
|
23 |
|
footexlem.q |
|
24 |
|
footexlem.8 |
|
25 |
|
footexlem.9 |
|
26 |
|
footexlem.10 |
|
27 |
|
footexlem.11 |
|
28 |
|
footexlem.12 |
|
29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
|
footexlem1 |
|
30 |
|
nelne2 |
|
31 |
29 8 30
|
syl2anc |
|
32 |
31
|
necomd |
|
33 |
1 3 4 5 7 12 32
|
tgelrnln |
|
34 |
1 3 4 5 7 12 32
|
tglinerflx2 |
|
35 |
34 29
|
elind |
|
36 |
1 3 4 5 7 12 32
|
tglinerflx1 |
|
37 |
17
|
necomd |
|
38 |
1 3 4 5 10 9 13 37 18
|
btwnlng3 |
|
39 |
1 3 4 5 9 10 13 17 38
|
lncom |
|
40 |
39 16
|
eleqtrrd |
|
41 |
|
eqid |
|
42 |
5
|
adantr |
|
43 |
9
|
adantr |
|
44 |
13
|
adantr |
|
45 |
11
|
adantr |
|
46 |
7
|
adantr |
|
47 |
|
eqidd |
|
48 |
|
simpr |
|
49 |
|
eqidd |
|
50 |
47 48 49
|
s3eqd |
|
51 |
12
|
adantr |
|
52 |
14
|
adantr |
|
53 |
|
eqid |
|
54 |
1 2 3 4 41 5 14 53 23
|
mircl |
|
55 |
1 2 3 5 9 13 9 7 19
|
tgcgrcomlr |
|
56 |
25 55
|
eqtr2d |
|
57 |
1 3 4 5 9 10 17
|
tglinerflx1 |
|
58 |
57 16
|
eleqtrrd |
|
59 |
|
nelne2 |
|
60 |
58 8 59
|
syl2anc |
|
61 |
60
|
necomd |
|
62 |
1 2 3 5 7 9 13 23 56 61
|
tgcgrneq |
|
63 |
62
|
necomd |
|
64 |
|
nelne2 |
|
65 |
40 8 64
|
syl2anc |
|
66 |
65
|
necomd |
|
67 |
20 66
|
eqnetrrd |
|
68 |
|
eqid |
|
69 |
1 2 3 4 41 5 11 68 13
|
mirinv |
|
70 |
69
|
necon3bid |
|
71 |
67 70
|
mpbid |
|
72 |
1 2 3 4 41 5 11 68 13
|
mirbtwn |
|
73 |
20
|
oveq1d |
|
74 |
72 73
|
eleqtrrd |
|
75 |
1 2 3 5 7 11 13 23 71 74 24
|
tgbtwnouttr2 |
|
76 |
1 2 3 5 7 13 23 75
|
tgbtwncom |
|
77 |
|
eqid |
|
78 |
20
|
oveq2d |
|
79 |
19 78
|
eqtrd |
|
80 |
1 2 3 4 41 5 9 11 13
|
israg |
|
81 |
79 80
|
mpbird |
|
82 |
1 2 3 5 11 13 23 24
|
tgbtwncom |
|
83 |
1 2 3 5 13 23 13 9 25
|
tgcgrcomlr |
|
84 |
22
|
eqcomd |
|
85 |
1 2 3 5 23 9
|
axtgcgrrflx |
|
86 |
25
|
eqcomd |
|
87 |
1 2 3 5 23 13 11 9 13 14 9 23 63 82 21 83 84 85 86
|
axtg5seg |
|
88 |
1 2 3 5 11 9 14 23 87
|
tgcgrcomlr |
|
89 |
1 2 3 5 13 11 13 14 84
|
tgcgrcomlr |
|
90 |
1 2 77 5 9 11 13 23 14 13 88 89 86
|
trgcgr |
|
91 |
1 2 3 4 41 5 9 11 13 77 23 14 13 81 90
|
ragcgr |
|
92 |
1 2 3 4 41 5 23 14 13 91
|
ragcom |
|
93 |
1 2 3 4 41 5 13 14 23
|
israg |
|
94 |
92 93
|
mpbid |
|
95 |
1 2 3 5 13 23 13 54 94
|
tgcgrcomlr |
|
96 |
27
|
eqcomd |
|
97 |
1 2 3 4 41 5 14 53 23
|
mircgr |
|
98 |
97
|
eqcomd |
|
99 |
1 2 3 5 14 23 14 54 98
|
tgcgrcomlr |
|
100 |
|
eqidd |
|
101 |
1 2 3 5 23 13 7 54 13 15 14 14 63 76 26 95 96 99 100
|
axtg5seg |
|
102 |
1 2 3 5 7 14 15 14 101
|
tgcgrcomlr |
|
103 |
28
|
oveq2d |
|
104 |
102 103
|
eqtrd |
|
105 |
1 2 3 4 41 5 14 12 7
|
israg |
|
106 |
104 105
|
mpbird |
|
107 |
106
|
adantr |
|
108 |
71
|
necomd |
|
109 |
1 2 3 5 13 11 13 14 84 108
|
tgcgrneq |
|
110 |
109
|
necomd |
|
111 |
110
|
adantr |
|
112 |
111 48
|
neeqtrd |
|
113 |
19
|
eqcomd |
|
114 |
113
|
adantr |
|
115 |
60
|
adantr |
|
116 |
1 2 3 42 43 46 43 44 114 115
|
tgcgrneq |
|
117 |
116
|
necomd |
|
118 |
1 2 3 5 9 7 9 13 113 60
|
tgcgrneq |
|
119 |
1 3 4 5 9 13 14 118 21
|
btwnlng3 |
|
120 |
119
|
adantr |
|
121 |
1 3 4 42 44 43 52 117 120
|
lncom |
|
122 |
48
|
oveq1d |
|
123 |
121 122
|
eleqtrd |
|
124 |
123
|
orcd |
|
125 |
1 2 3 4 41 42 52 51 46 43 107 112 124
|
ragcol |
|
126 |
1 2 3 4 41 42 43 51 46 125
|
ragcom |
|
127 |
50 126
|
eqeltrd |
|
128 |
66
|
adantr |
|
129 |
1 2 3 5 7 11 13 74
|
tgbtwncom |
|
130 |
1 4 3 5 13 11 7 129
|
btwncolg3 |
|
131 |
130
|
adantr |
|
132 |
1 2 3 4 41 42 46 44 43 45 127 128 131
|
ragcol |
|
133 |
1 2 3 4 41 42 45 44 43 132
|
ragcom |
|
134 |
81
|
adantr |
|
135 |
1 2 3 4 41 42 43 44 45 133 134
|
ragflat |
|
136 |
108
|
adantr |
|
137 |
136
|
neneqd |
|
138 |
135 137
|
pm2.65da |
|
139 |
138
|
neqned |
|
140 |
28
|
oveq2d |
|
141 |
96 140
|
eqtrd |
|
142 |
1 2 3 4 41 5 13 12 7
|
israg |
|
143 |
141 142
|
mpbird |
|
144 |
1 2 3 4 41 5 13 12 7 143
|
ragcom |
|
145 |
1 2 3 4 5 33 6 35 36 40 32 139 144
|
ragperp |
|