Metamath Proof Explorer


Theorem foov

Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006)

Ref Expression
Assertion foov F : A × B onto C F : A × B C z C x A y B z = x F y

Proof

Step Hyp Ref Expression
1 dffo3 F : A × B onto C F : A × B C z C w A × B z = F w
2 fveq2 w = x y F w = F x y
3 df-ov x F y = F x y
4 2 3 eqtr4di w = x y F w = x F y
5 4 eqeq2d w = x y z = F w z = x F y
6 5 rexxp w A × B z = F w x A y B z = x F y
7 6 ralbii z C w A × B z = F w z C x A y B z = x F y
8 7 anbi2i F : A × B C z C w A × B z = F w F : A × B C z C x A y B z = x F y
9 1 8 bitri F : A × B onto C F : A × B C z C x A y B z = x F y