Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fores
Next ⟩
fimadmfoALT
Metamath Proof Explorer
Ascii
Unicode
Theorem
fores
Description:
Restriction of an onto function.
(Contributed by
NM
, 4-Mar-1997)
Ref
Expression
Assertion
fores
⊢
Fun
⁡
F
∧
A
⊆
dom
⁡
F
→
F
↾
A
:
A
⟶
onto
F
A
Proof
Step
Hyp
Ref
Expression
1
funres
⊢
Fun
⁡
F
→
Fun
⁡
F
↾
A
2
1
anim1i
⊢
Fun
⁡
F
∧
A
⊆
dom
⁡
F
→
Fun
⁡
F
↾
A
∧
A
⊆
dom
⁡
F
3
df-fn
⊢
F
↾
A
Fn
A
↔
Fun
⁡
F
↾
A
∧
dom
⁡
F
↾
A
=
A
4
df-ima
⊢
F
A
=
ran
⁡
F
↾
A
5
4
eqcomi
⊢
ran
⁡
F
↾
A
=
F
A
6
df-fo
⊢
F
↾
A
:
A
⟶
onto
F
A
↔
F
↾
A
Fn
A
∧
ran
⁡
F
↾
A
=
F
A
7
5
6
mpbiran2
⊢
F
↾
A
:
A
⟶
onto
F
A
↔
F
↾
A
Fn
A
8
ssdmres
⊢
A
⊆
dom
⁡
F
↔
dom
⁡
F
↾
A
=
A
9
8
anbi2i
⊢
Fun
⁡
F
↾
A
∧
A
⊆
dom
⁡
F
↔
Fun
⁡
F
↾
A
∧
dom
⁡
F
↾
A
=
A
10
3
7
9
3bitr4i
⊢
F
↾
A
:
A
⟶
onto
F
A
↔
Fun
⁡
F
↾
A
∧
A
⊆
dom
⁡
F
11
2
10
sylibr
⊢
Fun
⁡
F
∧
A
⊆
dom
⁡
F
→
F
↾
A
:
A
⟶
onto
F
A