Metamath Proof Explorer


Theorem fores

Description: Restriction of an onto function. (Contributed by NM, 4-Mar-1997)

Ref Expression
Assertion fores Fun F A dom F F A : A onto F A

Proof

Step Hyp Ref Expression
1 funres Fun F Fun F A
2 1 anim1i Fun F A dom F Fun F A A dom F
3 df-fn F A Fn A Fun F A dom F A = A
4 df-ima F A = ran F A
5 4 eqcomi ran F A = F A
6 df-fo F A : A onto F A F A Fn A ran F A = F A
7 5 6 mpbiran2 F A : A onto F A F A Fn A
8 ssdmres A dom F dom F A = A
9 8 anbi2i Fun F A A dom F Fun F A dom F A = A
10 3 7 9 3bitr4i F A : A onto F A Fun F A A dom F
11 2 10 sylibr Fun F A dom F F A : A onto F A