Step |
Hyp |
Ref |
Expression |
1 |
|
fornex |
|
2 |
1
|
imp |
|
3 |
|
foelrn |
|
4 |
|
fofn |
|
5 |
|
eqcom |
|
6 |
|
fniniseg |
|
7 |
6
|
biimpar |
|
8 |
7
|
anassrs |
|
9 |
5 8
|
sylan2br |
|
10 |
4 9
|
sylanl1 |
|
11 |
10
|
ex |
|
12 |
11
|
reximdva |
|
13 |
12
|
adantr |
|
14 |
3 13
|
mpd |
|
15 |
14
|
adantll |
|
16 |
15
|
ralrimiva |
|
17 |
|
eleq1 |
|
18 |
17
|
ac6sg |
|
19 |
2 16 18
|
sylc |
|
20 |
|
frn |
|
21 |
20
|
ad2antrl |
|
22 |
|
vex |
|
23 |
22
|
rnex |
|
24 |
23
|
elpw |
|
25 |
21 24
|
sylibr |
|
26 |
|
fof |
|
27 |
26
|
ad2antlr |
|
28 |
27 21
|
fssresd |
|
29 |
|
ffn |
|
30 |
29
|
ad2antrl |
|
31 |
|
dffn3 |
|
32 |
30 31
|
sylib |
|
33 |
|
fvres |
|
34 |
33
|
adantl |
|
35 |
34
|
fveq2d |
|
36 |
|
nfv |
|
37 |
|
nfv |
|
38 |
|
nfra1 |
|
39 |
37 38
|
nfan |
|
40 |
36 39
|
nfan |
|
41 |
|
nfv |
|
42 |
40 41
|
nfan |
|
43 |
|
simpr |
|
44 |
43
|
fveq2d |
|
45 |
4
|
ad5antlr |
|
46 |
|
simplrr |
|
47 |
46
|
ad2antrr |
|
48 |
|
simplr |
|
49 |
|
rspa |
|
50 |
47 48 49
|
syl2anc |
|
51 |
|
fniniseg |
|
52 |
51
|
simplbda |
|
53 |
45 50 52
|
syl2anc |
|
54 |
44 53
|
eqtr3d |
|
55 |
54
|
fveq2d |
|
56 |
55 43
|
eqtrd |
|
57 |
|
fvelrnb |
|
58 |
57
|
biimpa |
|
59 |
30 58
|
sylan |
|
60 |
42 56 59
|
r19.29af |
|
61 |
35 60
|
eqtrd |
|
62 |
61
|
ralrimiva |
|
63 |
32
|
ffvelrnda |
|
64 |
|
fvres |
|
65 |
63 64
|
syl |
|
66 |
4
|
ad3antlr |
|
67 |
|
simplrr |
|
68 |
|
simpr |
|
69 |
67 68 49
|
syl2anc |
|
70 |
66 69 52
|
syl2anc |
|
71 |
65 70
|
eqtrd |
|
72 |
71
|
ex |
|
73 |
40 72
|
ralrimi |
|
74 |
28 32 62 73
|
2fvidf1od |
|
75 |
|
reseq2 |
|
76 |
|
id |
|
77 |
|
eqidd |
|
78 |
75 76 77
|
f1oeq123d |
|
79 |
78
|
rspcev |
|
80 |
25 74 79
|
syl2anc |
|
81 |
19 80
|
exlimddv |
|