Metamath Proof Explorer


Theorem fornex

Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004)

Ref Expression
Assertion fornex A C F : A onto B B V

Proof

Step Hyp Ref Expression
1 fofun F : A onto B Fun F
2 funrnex dom F C Fun F ran F V
3 1 2 syl5com F : A onto B dom F C ran F V
4 fof F : A onto B F : A B
5 4 fdmd F : A onto B dom F = A
6 5 eleq1d F : A onto B dom F C A C
7 forn F : A onto B ran F = B
8 7 eleq1d F : A onto B ran F V B V
9 3 6 8 3imtr3d F : A onto B A C B V
10 9 com12 A C F : A onto B B V