Metamath Proof Explorer


Theorem fourier2

Description: Fourier series convergence, for a piecewise smooth function. Here it is also proven the existence of the left and right limits of F at any given point X . See fourierd for a comparison. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourier2.f φ F :
fourier2.t T = 2 π
fourier2.per φ x F x + T = F x
fourier2.g G = F π π
fourier2.dmdv φ π π dom G Fin
fourier2.dvcn φ G : dom G cn
fourier2.rlim φ x π π dom G G x +∞ lim x
fourier2.llim φ x π π dom G G −∞ x lim x
fourier2.x φ X
fourier2.a A = n 0 π π F x cos n x dx π
fourier2.b B = n π π F x sin n x dx π
Assertion fourier2 φ l F −∞ X lim X r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2

Proof

Step Hyp Ref Expression
1 fourier2.f φ F :
2 fourier2.t T = 2 π
3 fourier2.per φ x F x + T = F x
4 fourier2.g G = F π π
5 fourier2.dmdv φ π π dom G Fin
6 fourier2.dvcn φ G : dom G cn
7 fourier2.rlim φ x π π dom G G x +∞ lim x
8 fourier2.llim φ x π π dom G G −∞ x lim x
9 fourier2.x φ X
10 fourier2.a A = n 0 π π F x cos n x dx π
11 fourier2.b B = n π π F x sin n x dx π
12 1 2 3 4 5 6 7 8 9 fourierdlem106 φ F −∞ X lim X F X +∞ lim X
13 12 simpld φ F −∞ X lim X
14 n0 F −∞ X lim X l l F −∞ X lim X
15 13 14 sylib φ l l F −∞ X lim X
16 simpr φ l F −∞ X lim X l F −∞ X lim X
17 12 simprd φ F X +∞ lim X
18 n0 F X +∞ lim X r r F X +∞ lim X
19 17 18 sylib φ r r F X +∞ lim X
20 19 adantr φ l F −∞ X lim X r r F X +∞ lim X
21 simpr φ l F −∞ X lim X r F X +∞ lim X r F X +∞ lim X
22 1 ad2antrr φ l F −∞ X lim X r F X +∞ lim X F :
23 3 ad4ant14 φ l F −∞ X lim X r F X +∞ lim X x F x + T = F x
24 5 ad2antrr φ l F −∞ X lim X r F X +∞ lim X π π dom G Fin
25 6 ad2antrr φ l F −∞ X lim X r F X +∞ lim X G : dom G cn
26 7 ad4ant14 φ l F −∞ X lim X r F X +∞ lim X x π π dom G G x +∞ lim x
27 8 ad4ant14 φ l F −∞ X lim X r F X +∞ lim X x π π dom G G −∞ x lim x
28 9 ad2antrr φ l F −∞ X lim X r F X +∞ lim X X
29 16 adantr φ l F −∞ X lim X r F X +∞ lim X l F −∞ X lim X
30 22 2 23 4 24 25 26 27 28 29 21 10 11 fourierd φ l F −∞ X lim X r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2
31 21 30 jca φ l F −∞ X lim X r F X +∞ lim X r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2
32 31 ex φ l F −∞ X lim X r F X +∞ lim X r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2
33 32 eximdv φ l F −∞ X lim X r r F X +∞ lim X r r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2
34 20 33 mpd φ l F −∞ X lim X r r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2
35 df-rex r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2 r r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2
36 34 35 sylibr φ l F −∞ X lim X r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2
37 16 36 jca φ l F −∞ X lim X l F −∞ X lim X r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2
38 37 ex φ l F −∞ X lim X l F −∞ X lim X r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2
39 38 eximdv φ l l F −∞ X lim X l l F −∞ X lim X r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2
40 15 39 mpd φ l l F −∞ X lim X r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2
41 df-rex l F −∞ X lim X r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2 l l F −∞ X lim X r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2
42 40 41 sylibr φ l F −∞ X lim X r F X +∞ lim X A 0 2 + n A n cos n X + B n sin n X = l + r 2