Metamath Proof Explorer


Theorem fourierclimd

Description: Fourier series convergence, for piecewise smooth functions. See fourierd for the analogous sum_ equation. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierclimd.f φF:
fourierclimd.t T=2π
fourierclimd.per φxFx+T=Fx
fourierclimd.g G=Fππ
fourierclimd.dmdv φππdomGFin
fourierclimd.dvcn φG:domGcn
fourierclimd.rlim φxππdomGGx+∞limx
fourierclimd.llim φxππdomGG−∞xlimx
fourierclimd.x φX
fourierclimd.l φLF−∞XlimX
fourierclimd.r φRFX+∞limX
fourierclimd.a A=n0ππFxcosnxdxπ
fourierclimd.b B=nππFxsinnxdxπ
fourierclimd.s S=nAncosnX+BnsinnX
Assertion fourierclimd φseq1+SL+R2A02

Proof

Step Hyp Ref Expression
1 fourierclimd.f φF:
2 fourierclimd.t T=2π
3 fourierclimd.per φxFx+T=Fx
4 fourierclimd.g G=Fππ
5 fourierclimd.dmdv φππdomGFin
6 fourierclimd.dvcn φG:domGcn
7 fourierclimd.rlim φxππdomGGx+∞limx
8 fourierclimd.llim φxππdomGG−∞xlimx
9 fourierclimd.x φX
10 fourierclimd.l φLF−∞XlimX
11 fourierclimd.r φRFX+∞limX
12 fourierclimd.a A=n0ππFxcosnxdxπ
13 fourierclimd.b B=nππFxsinnxdxπ
14 fourierclimd.s S=nAncosnX+BnsinnX
15 nfcv _kAncosnX+BnsinnX
16 nfmpt1 _nn0ππFxcosnxdxπ
17 12 16 nfcxfr _nA
18 nfcv _nk
19 17 18 nffv _nAk
20 nfcv _n×
21 nfcv _ncoskX
22 19 20 21 nfov _nAkcoskX
23 nfcv _n+
24 nfmpt1 _nnππFxsinnxdxπ
25 13 24 nfcxfr _nB
26 25 18 nffv _nBk
27 nfcv _nsinkX
28 26 20 27 nfov _nBksinkX
29 22 23 28 nfov _nAkcoskX+BksinkX
30 fveq2 n=kAn=Ak
31 oveq1 n=knX=kX
32 31 fveq2d n=kcosnX=coskX
33 30 32 oveq12d n=kAncosnX=AkcoskX
34 fveq2 n=kBn=Bk
35 31 fveq2d n=ksinnX=sinkX
36 34 35 oveq12d n=kBnsinnX=BksinkX
37 33 36 oveq12d n=kAncosnX+BnsinnX=AkcoskX+BksinkX
38 15 29 37 cbvmpt nAncosnX+BnsinnX=kAkcoskX+BksinkX
39 14 38 eqtri S=kAkcoskX+BksinkX
40 1 2 3 4 5 6 7 8 9 10 11 12 13 39 fourierdlem115 φseq1+SL+R2A02A02+nAncosnX+BnsinnX=L+R2
41 40 simpld φseq1+SL+R2A02