Description: A piecewise continuous function is integrable on any closed interval. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fourierlemiblglemlem.p | |
|
| fourierdlem100.t | |
||
| fourierdlem100.m | |
||
| fourierdlem100.q | |
||
| fourierdlem100.f | |
||
| fourierdlem100.per | |
||
| fourierdlem100.fcn | |
||
| fourierdlem100.r | |
||
| fourierdlem100.l | |
||
| fourierdlem100.c | |
||
| fourierdlem100.d | |
||
| fourierdlem100.o | |
||
| fourierdlem100.n | |
||
| fourierdlem100.h | |
||
| fourierdlem100.s | |
||
| fourierdlem100.e | |
||
| fourierdlem100.j | |
||
| fourierdlem100.i | |
||
| Assertion | fourierdlem100 | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierlemiblglemlem.p | |
|
| 2 | fourierdlem100.t | |
|
| 3 | fourierdlem100.m | |
|
| 4 | fourierdlem100.q | |
|
| 5 | fourierdlem100.f | |
|
| 6 | fourierdlem100.per | |
|
| 7 | fourierdlem100.fcn | |
|
| 8 | fourierdlem100.r | |
|
| 9 | fourierdlem100.l | |
|
| 10 | fourierdlem100.c | |
|
| 11 | fourierdlem100.d | |
|
| 12 | fourierdlem100.o | |
|
| 13 | fourierdlem100.n | |
|
| 14 | fourierdlem100.h | |
|
| 15 | fourierdlem100.s | |
|
| 16 | fourierdlem100.e | |
|
| 17 | fourierdlem100.j | |
|
| 18 | fourierdlem100.i | |
|
| 19 | elioore | |
|
| 20 | 11 19 | syl | |
| 21 | 10 20 | iccssred | |
| 22 | 5 21 | feqresmpt | |
| 23 | fveq2 | |
|
| 24 | oveq1 | |
|
| 25 | 24 | fveq2d | |
| 26 | 23 25 | breq12d | |
| 27 | 26 | cbvralvw | |
| 28 | 27 | anbi2i | |
| 29 | 28 | a1i | |
| 30 | 29 | rabbiia | |
| 31 | 30 | mpteq2i | |
| 32 | 12 31 | eqtri | |
| 33 | elioo4g | |
|
| 34 | 11 33 | sylib | |
| 35 | 34 | simprd | |
| 36 | 35 | simpld | |
| 37 | id | |
|
| 38 | 2 | eqcomi | |
| 39 | 38 | oveq2i | |
| 40 | 39 | a1i | |
| 41 | 37 40 | oveq12d | |
| 42 | 41 | eleq1d | |
| 43 | 42 | rexbidv | |
| 44 | 43 | cbvrabv | |
| 45 | 44 | uneq2i | |
| 46 | 39 | eqcomi | |
| 47 | 46 | oveq2i | |
| 48 | 47 | eleq1i | |
| 49 | 48 | rexbii | |
| 50 | 49 | rgenw | |
| 51 | rabbi | |
|
| 52 | 50 51 | mpbi | |
| 53 | 52 | uneq2i | |
| 54 | 14 53 | eqtri | |
| 55 | 54 | fveq2i | |
| 56 | 55 | oveq1i | |
| 57 | 13 56 | eqtri | |
| 58 | isoeq5 | |
|
| 59 | 54 58 | ax-mp | |
| 60 | 59 | iotabii | |
| 61 | 15 60 | eqtri | |
| 62 | 2 1 3 4 10 20 36 12 45 57 61 | fourierdlem54 | |
| 63 | 62 | simpld | |
| 64 | 63 | simpld | |
| 65 | 63 | simprd | |
| 66 | 5 21 | fssresd | |
| 67 | ioossicc | |
|
| 68 | 10 | adantr | |
| 69 | 68 | rexrd | |
| 70 | 11 | adantr | |
| 71 | 70 19 | syl | |
| 72 | 71 | rexrd | |
| 73 | 12 64 65 | fourierdlem15 | |
| 74 | 73 | adantr | |
| 75 | simpr | |
|
| 76 | 69 72 74 75 | fourierdlem8 | |
| 77 | 67 76 | sstrid | |
| 78 | 77 | resabs1d | |
| 79 | 3 | adantr | |
| 80 | 4 | adantr | |
| 81 | 5 | adantr | |
| 82 | 6 | adantlr | |
| 83 | 7 | adantlr | |
| 84 | eqid | |
|
| 85 | eqid | |
|
| 86 | eqid | |
|
| 87 | 1 2 79 80 81 82 83 68 70 12 14 13 15 16 17 75 84 85 86 18 | fourierdlem90 | |
| 88 | 78 87 | eqeltrd | |
| 89 | 8 | adantlr | |
| 90 | eqid | |
|
| 91 | 1 2 79 80 81 82 83 89 68 70 12 14 13 15 16 17 75 84 18 90 | fourierdlem89 | |
| 92 | 78 | eqcomd | |
| 93 | 92 | oveq1d | |
| 94 | 91 93 | eleqtrd | |
| 95 | 9 | adantlr | |
| 96 | eqid | |
|
| 97 | 1 2 79 80 81 82 83 95 68 70 12 14 13 15 16 17 75 84 18 96 | fourierdlem91 | |
| 98 | 92 | oveq1d | |
| 99 | 97 98 | eleqtrd | |
| 100 | 32 64 65 66 88 94 99 | fourierdlem69 | |
| 101 | 22 100 | eqeltrrd | |