Metamath Proof Explorer


Theorem fourierdlem100

Description: A piecewise continuous function is integrable on any closed interval. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierlemiblglemlem.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem100.t T = B A
fourierdlem100.m φ M
fourierdlem100.q φ Q P M
fourierdlem100.f φ F :
fourierdlem100.per φ x F x + T = F x
fourierdlem100.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem100.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
fourierdlem100.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
fourierdlem100.c φ C
fourierdlem100.d φ D C +∞
fourierdlem100.o O = m p 0 m | p 0 = C p m = D i 0 ..^ m p i < p i + 1
fourierdlem100.n N = H 1
fourierdlem100.h H = C D y C D | k y + k T ran Q
fourierdlem100.s S = ι f | f Isom < , < 0 N H
fourierdlem100.e E = x x + B x T T
fourierdlem100.j J = y A B if y = B A y
fourierdlem100.i I = x sup i 0 ..^ M | Q i J E x <
Assertion fourierdlem100 φ x C D F x 𝐿 1

Proof

Step Hyp Ref Expression
1 fourierlemiblglemlem.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
2 fourierdlem100.t T = B A
3 fourierdlem100.m φ M
4 fourierdlem100.q φ Q P M
5 fourierdlem100.f φ F :
6 fourierdlem100.per φ x F x + T = F x
7 fourierdlem100.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
8 fourierdlem100.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
9 fourierdlem100.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
10 fourierdlem100.c φ C
11 fourierdlem100.d φ D C +∞
12 fourierdlem100.o O = m p 0 m | p 0 = C p m = D i 0 ..^ m p i < p i + 1
13 fourierdlem100.n N = H 1
14 fourierdlem100.h H = C D y C D | k y + k T ran Q
15 fourierdlem100.s S = ι f | f Isom < , < 0 N H
16 fourierdlem100.e E = x x + B x T T
17 fourierdlem100.j J = y A B if y = B A y
18 fourierdlem100.i I = x sup i 0 ..^ M | Q i J E x <
19 elioore D C +∞ D
20 11 19 syl φ D
21 10 20 iccssred φ C D
22 5 21 feqresmpt φ F C D = x C D F x
23 fveq2 i = j p i = p j
24 oveq1 i = j i + 1 = j + 1
25 24 fveq2d i = j p i + 1 = p j + 1
26 23 25 breq12d i = j p i < p i + 1 p j < p j + 1
27 26 cbvralvw i 0 ..^ m p i < p i + 1 j 0 ..^ m p j < p j + 1
28 27 anbi2i p 0 = C p m = D i 0 ..^ m p i < p i + 1 p 0 = C p m = D j 0 ..^ m p j < p j + 1
29 28 a1i p 0 m p 0 = C p m = D i 0 ..^ m p i < p i + 1 p 0 = C p m = D j 0 ..^ m p j < p j + 1
30 29 rabbiia p 0 m | p 0 = C p m = D i 0 ..^ m p i < p i + 1 = p 0 m | p 0 = C p m = D j 0 ..^ m p j < p j + 1
31 30 mpteq2i m p 0 m | p 0 = C p m = D i 0 ..^ m p i < p i + 1 = m p 0 m | p 0 = C p m = D j 0 ..^ m p j < p j + 1
32 12 31 eqtri O = m p 0 m | p 0 = C p m = D j 0 ..^ m p j < p j + 1
33 elioo4g D C +∞ C * +∞ * D C < D D < +∞
34 11 33 sylib φ C * +∞ * D C < D D < +∞
35 34 simprd φ C < D D < +∞
36 35 simpld φ C < D
37 id y = x y = x
38 2 eqcomi B A = T
39 38 oveq2i k B A = k T
40 39 a1i y = x k B A = k T
41 37 40 oveq12d y = x y + k B A = x + k T
42 41 eleq1d y = x y + k B A ran Q x + k T ran Q
43 42 rexbidv y = x k y + k B A ran Q k x + k T ran Q
44 43 cbvrabv y C D | k y + k B A ran Q = x C D | k x + k T ran Q
45 44 uneq2i C D y C D | k y + k B A ran Q = C D x C D | k x + k T ran Q
46 39 eqcomi k T = k B A
47 46 oveq2i y + k T = y + k B A
48 47 eleq1i y + k T ran Q y + k B A ran Q
49 48 rexbii k y + k T ran Q k y + k B A ran Q
50 49 rgenw y C D k y + k T ran Q k y + k B A ran Q
51 rabbi y C D k y + k T ran Q k y + k B A ran Q y C D | k y + k T ran Q = y C D | k y + k B A ran Q
52 50 51 mpbi y C D | k y + k T ran Q = y C D | k y + k B A ran Q
53 52 uneq2i C D y C D | k y + k T ran Q = C D y C D | k y + k B A ran Q
54 14 53 eqtri H = C D y C D | k y + k B A ran Q
55 54 fveq2i H = C D y C D | k y + k B A ran Q
56 55 oveq1i H 1 = C D y C D | k y + k B A ran Q 1
57 13 56 eqtri N = C D y C D | k y + k B A ran Q 1
58 isoeq5 H = C D y C D | k y + k B A ran Q f Isom < , < 0 N H f Isom < , < 0 N C D y C D | k y + k B A ran Q
59 54 58 ax-mp f Isom < , < 0 N H f Isom < , < 0 N C D y C D | k y + k B A ran Q
60 59 iotabii ι f | f Isom < , < 0 N H = ι f | f Isom < , < 0 N C D y C D | k y + k B A ran Q
61 15 60 eqtri S = ι f | f Isom < , < 0 N C D y C D | k y + k B A ran Q
62 2 1 3 4 10 20 36 12 45 57 61 fourierdlem54 φ N S O N S Isom < , < 0 N C D y C D | k y + k B A ran Q
63 62 simpld φ N S O N
64 63 simpld φ N
65 63 simprd φ S O N
66 5 21 fssresd φ F C D : C D
67 ioossicc S j S j + 1 S j S j + 1
68 10 adantr φ j 0 ..^ N C
69 68 rexrd φ j 0 ..^ N C *
70 11 adantr φ j 0 ..^ N D C +∞
71 70 19 syl φ j 0 ..^ N D
72 71 rexrd φ j 0 ..^ N D *
73 12 64 65 fourierdlem15 φ S : 0 N C D
74 73 adantr φ j 0 ..^ N S : 0 N C D
75 simpr φ j 0 ..^ N j 0 ..^ N
76 69 72 74 75 fourierdlem8 φ j 0 ..^ N S j S j + 1 C D
77 67 76 sstrid φ j 0 ..^ N S j S j + 1 C D
78 77 resabs1d φ j 0 ..^ N F C D S j S j + 1 = F S j S j + 1
79 3 adantr φ j 0 ..^ N M
80 4 adantr φ j 0 ..^ N Q P M
81 5 adantr φ j 0 ..^ N F :
82 6 adantlr φ j 0 ..^ N x F x + T = F x
83 7 adantlr φ j 0 ..^ N i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
84 eqid S j + 1 E S j + 1 = S j + 1 E S j + 1
85 eqid F J E S j E S j + 1 = F J E S j E S j + 1
86 eqid y J E S j + S j + 1 - E S j + 1 E S j + 1 + S j + 1 - E S j + 1 F J E S j E S j + 1 y S j + 1 E S j + 1 = y J E S j + S j + 1 - E S j + 1 E S j + 1 + S j + 1 - E S j + 1 F J E S j E S j + 1 y S j + 1 E S j + 1
87 1 2 79 80 81 82 83 68 70 12 14 13 15 16 17 75 84 85 86 18 fourierdlem90 φ j 0 ..^ N F S j S j + 1 : S j S j + 1 cn
88 78 87 eqeltrd φ j 0 ..^ N F C D S j S j + 1 : S j S j + 1 cn
89 8 adantlr φ j 0 ..^ N i 0 ..^ M R F Q i Q i + 1 lim Q i
90 eqid i 0 ..^ M R = i 0 ..^ M R
91 1 2 79 80 81 82 83 89 68 70 12 14 13 15 16 17 75 84 18 90 fourierdlem89 φ j 0 ..^ N if J E S j = Q I S j i 0 ..^ M R I S j F J E S j F S j S j + 1 lim S j
92 78 eqcomd φ j 0 ..^ N F S j S j + 1 = F C D S j S j + 1
93 92 oveq1d φ j 0 ..^ N F S j S j + 1 lim S j = F C D S j S j + 1 lim S j
94 91 93 eleqtrd φ j 0 ..^ N if J E S j = Q I S j i 0 ..^ M R I S j F J E S j F C D S j S j + 1 lim S j
95 9 adantlr φ j 0 ..^ N i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
96 eqid i 0 ..^ M L = i 0 ..^ M L
97 1 2 79 80 81 82 83 95 68 70 12 14 13 15 16 17 75 84 18 96 fourierdlem91 φ j 0 ..^ N if E S j + 1 = Q I S j + 1 i 0 ..^ M L I S j F E S j + 1 F S j S j + 1 lim S j + 1
98 92 oveq1d φ j 0 ..^ N F S j S j + 1 lim S j + 1 = F C D S j S j + 1 lim S j + 1
99 97 98 eleqtrd φ j 0 ..^ N if E S j + 1 = Q I S j + 1 i 0 ..^ M L I S j F E S j + 1 F C D S j S j + 1 lim S j + 1
100 32 64 65 66 88 94 99 fourierdlem69 φ F C D 𝐿 1
101 22 100 eqeltrrd φ x C D F x 𝐿 1