Metamath Proof Explorer


Theorem fourierdlem101

Description: Integral by substitution for a piecewise continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem101.d D = n s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
fourierdlem101.p P = m p 0 m | p 0 = π p m = π i 0 ..^ m p i < p i + 1
fourierdlem101.g G = t π π F t D N t X
fourierdlem101.q φ Q P M
fourierdlem101.6 φ M
fourierdlem101.n φ N
fourierdlem101.x φ X
fourierdlem101.f φ F : π π
fourierdlem101.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem101.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
fourierdlem101.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
Assertion fourierdlem101 φ π π F t D N t X dt = - π - X π X F X + s D N s ds

Proof

Step Hyp Ref Expression
1 fourierdlem101.d D = n s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
2 fourierdlem101.p P = m p 0 m | p 0 = π p m = π i 0 ..^ m p i < p i + 1
3 fourierdlem101.g G = t π π F t D N t X
4 fourierdlem101.q φ Q P M
5 fourierdlem101.6 φ M
6 fourierdlem101.n φ N
7 fourierdlem101.x φ X
8 fourierdlem101.f φ F : π π
9 fourierdlem101.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
10 fourierdlem101.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
11 fourierdlem101.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
12 simpr φ t π π t π π
13 8 ffvelrnda φ t π π F t
14 6 adantr φ t π π N
15 pire π
16 15 renegcli π
17 eliccre π π t π π t
18 16 15 17 mp3an12 t π π t
19 18 adantl φ t π π t
20 7 adantr φ t π π X
21 19 20 resubcld φ t π π t X
22 1 dirkerre N t X D N t X
23 14 21 22 syl2anc φ t π π D N t X
24 23 recnd φ t π π D N t X
25 13 24 mulcld φ t π π F t D N t X
26 3 fvmpt2 t π π F t D N t X G t = F t D N t X
27 12 25 26 syl2anc φ t π π G t = F t D N t X
28 27 eqcomd φ t π π F t D N t X = G t
29 28 itgeq2dv φ π π F t D N t X dt = π π G t dt
30 fveq2 j = i Q j = Q i
31 30 oveq1d j = i Q j X = Q i X
32 31 cbvmptv j 0 M Q j X = i 0 M Q i X
33 25 3 fmptd φ G : π π
34 3 reseq1i G Q i Q i + 1 = t π π F t D N t X Q i Q i + 1
35 ioossicc Q i Q i + 1 Q i Q i + 1
36 16 a1i φ π
37 36 rexrd φ π *
38 37 adantr φ i 0 ..^ M π *
39 15 a1i φ π
40 39 rexrd φ π *
41 40 adantr φ i 0 ..^ M π *
42 2 5 4 fourierdlem15 φ Q : 0 M π π
43 42 adantr φ i 0 ..^ M Q : 0 M π π
44 simpr φ i 0 ..^ M i 0 ..^ M
45 38 41 43 44 fourierdlem8 φ i 0 ..^ M Q i Q i + 1 π π
46 35 45 sstrid φ i 0 ..^ M Q i Q i + 1 π π
47 46 resmptd φ i 0 ..^ M t π π F t D N t X Q i Q i + 1 = t Q i Q i + 1 F t D N t X
48 34 47 eqtrid φ i 0 ..^ M G Q i Q i + 1 = t Q i Q i + 1 F t D N t X
49 8 adantr φ i 0 ..^ M F : π π
50 49 46 feqresmpt φ i 0 ..^ M F Q i Q i + 1 = t Q i Q i + 1 F t
51 50 9 eqeltrrd φ i 0 ..^ M t Q i Q i + 1 F t : Q i Q i + 1 cn
52 eqidd φ i 0 ..^ M r Q i Q i + 1 s D N s = s D N s
53 simpr φ i 0 ..^ M r Q i Q i + 1 s = t Q i Q i + 1 t X r s = t Q i Q i + 1 t X r
54 eqidd φ i 0 ..^ M r Q i Q i + 1 t Q i Q i + 1 t X = t Q i Q i + 1 t X
55 oveq1 t = r t X = r X
56 55 adantl φ i 0 ..^ M r Q i Q i + 1 t = r t X = r X
57 simpr φ i 0 ..^ M r Q i Q i + 1 r Q i Q i + 1
58 elioore r Q i Q i + 1 r
59 58 adantl φ r Q i Q i + 1 r
60 7 adantr φ r Q i Q i + 1 X
61 59 60 resubcld φ r Q i Q i + 1 r X
62 61 adantlr φ i 0 ..^ M r Q i Q i + 1 r X
63 54 56 57 62 fvmptd φ i 0 ..^ M r Q i Q i + 1 t Q i Q i + 1 t X r = r X
64 63 adantr φ i 0 ..^ M r Q i Q i + 1 s = t Q i Q i + 1 t X r t Q i Q i + 1 t X r = r X
65 53 64 eqtrd φ i 0 ..^ M r Q i Q i + 1 s = t Q i Q i + 1 t X r s = r X
66 65 fveq2d φ i 0 ..^ M r Q i Q i + 1 s = t Q i Q i + 1 t X r D N s = D N r X
67 elioore t Q i Q i + 1 t
68 67 adantl φ t Q i Q i + 1 t
69 7 adantr φ t Q i Q i + 1 X
70 68 69 resubcld φ t Q i Q i + 1 t X
71 70 adantlr φ i 0 ..^ M t Q i Q i + 1 t X
72 eqid t Q i Q i + 1 t X = t Q i Q i + 1 t X
73 71 72 fmptd φ i 0 ..^ M t Q i Q i + 1 t X : Q i Q i + 1
74 73 ffvelrnda φ i 0 ..^ M r Q i Q i + 1 t Q i Q i + 1 t X r
75 6 ad2antrr φ i 0 ..^ M r Q i Q i + 1 N
76 1 dirkerre N r X D N r X
77 75 62 76 syl2anc φ i 0 ..^ M r Q i Q i + 1 D N r X
78 52 66 74 77 fvmptd φ i 0 ..^ M r Q i Q i + 1 s D N s t Q i Q i + 1 t X r = D N r X
79 78 eqcomd φ i 0 ..^ M r Q i Q i + 1 D N r X = s D N s t Q i Q i + 1 t X r
80 79 mpteq2dva φ i 0 ..^ M r Q i Q i + 1 D N r X = r Q i Q i + 1 s D N s t Q i Q i + 1 t X r
81 55 fveq2d t = r D N t X = D N r X
82 81 cbvmptv t Q i Q i + 1 D N t X = r Q i Q i + 1 D N r X
83 82 a1i φ i 0 ..^ M t Q i Q i + 1 D N t X = r Q i Q i + 1 D N r X
84 1 dirkerre N s D N s
85 6 84 sylan φ s D N s
86 eqid s D N s = s D N s
87 85 86 fmptd φ s D N s :
88 87 adantr φ i 0 ..^ M s D N s :
89 fcompt s D N s : t Q i Q i + 1 t X : Q i Q i + 1 s D N s t Q i Q i + 1 t X = r Q i Q i + 1 s D N s t Q i Q i + 1 t X r
90 88 73 89 syl2anc φ i 0 ..^ M s D N s t Q i Q i + 1 t X = r Q i Q i + 1 s D N s t Q i Q i + 1 t X r
91 80 83 90 3eqtr4d φ i 0 ..^ M t Q i Q i + 1 D N t X = s D N s t Q i Q i + 1 t X
92 eqid t t X = t t X
93 simpr φ t t
94 7 recnd φ X
95 94 adantr φ t X
96 93 95 negsubd φ t t + X = t X
97 96 eqcomd φ t t X = t + X
98 97 mpteq2dva φ t t X = t t + X
99 94 negcld φ X
100 eqid t t + X = t t + X
101 100 addccncf X t t + X : cn
102 99 101 syl φ t t + X : cn
103 98 102 eqeltrd φ t t X : cn
104 103 adantr φ i 0 ..^ M t t X : cn
105 ioossre Q i Q i + 1
106 ax-resscn
107 105 106 sstri Q i Q i + 1
108 107 a1i φ i 0 ..^ M Q i Q i + 1
109 106 a1i φ i 0 ..^ M
110 92 104 108 109 71 cncfmptssg φ i 0 ..^ M t Q i Q i + 1 t X : Q i Q i + 1 cn
111 85 recnd φ s D N s
112 111 86 fmptd φ s D N s :
113 ssid
114 1 dirkerf N D N :
115 6 114 syl φ D N :
116 115 feqmptd φ D N = s D N s
117 1 dirkercncf N D N : cn
118 6 117 syl φ D N : cn
119 116 118 eqeltrrd φ s D N s : cn
120 cncffvrn s D N s : cn s D N s : cn s D N s :
121 113 119 120 sylancr φ s D N s : cn s D N s :
122 112 121 mpbird φ s D N s : cn
123 122 adantr φ i 0 ..^ M s D N s : cn
124 110 123 cncfco φ i 0 ..^ M s D N s t Q i Q i + 1 t X : Q i Q i + 1 cn
125 91 124 eqeltrd φ i 0 ..^ M t Q i Q i + 1 D N t X : Q i Q i + 1 cn
126 51 125 mulcncf φ i 0 ..^ M t Q i Q i + 1 F t D N t X : Q i Q i + 1 cn
127 48 126 eqeltrd φ i 0 ..^ M G Q i Q i + 1 : Q i Q i + 1 cn
128 cncff F Q i Q i + 1 : Q i Q i + 1 cn F Q i Q i + 1 : Q i Q i + 1
129 9 128 syl φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1
130 115 adantr φ s Q i Q i + 1 D N :
131 elioore s Q i Q i + 1 s
132 131 adantl φ s Q i Q i + 1 s
133 7 adantr φ s Q i Q i + 1 X
134 132 133 resubcld φ s Q i Q i + 1 s X
135 130 134 ffvelrnd φ s Q i Q i + 1 D N s X
136 135 recnd φ s Q i Q i + 1 D N s X
137 eqid s Q i Q i + 1 D N s X = s Q i Q i + 1 D N s X
138 136 137 fmptd φ s Q i Q i + 1 D N s X : Q i Q i + 1
139 138 adantr φ i 0 ..^ M s Q i Q i + 1 D N s X : Q i Q i + 1
140 eqid t Q i Q i + 1 F Q i Q i + 1 t s Q i Q i + 1 D N s X t = t Q i Q i + 1 F Q i Q i + 1 t s Q i Q i + 1 D N s X t
141 oveq1 t = Q i t X = Q i X
142 141 fveq2d t = Q i D N t X = D N Q i X
143 142 eqcomd t = Q i D N Q i X = D N t X
144 143 adantl φ i 0 ..^ M t Q i Q i + 1 Q i t = Q i D N Q i X = D N t X
145 eqidd φ i 0 ..^ M t Q i Q i + 1 Q i ¬ t = Q i s Q i Q i + 1 D N s X = s Q i Q i + 1 D N s X
146 oveq1 s = t s X = t X
147 146 fveq2d s = t D N s X = D N t X
148 147 adantl φ i 0 ..^ M t Q i Q i + 1 Q i ¬ t = Q i s = t D N s X = D N t X
149 velsn t Q i t = Q i
150 149 notbii ¬ t Q i ¬ t = Q i
151 elunnel2 t Q i Q i + 1 Q i ¬ t Q i t Q i Q i + 1
152 150 151 sylan2br t Q i Q i + 1 Q i ¬ t = Q i t Q i Q i + 1
153 152 adantll φ i 0 ..^ M t Q i Q i + 1 Q i ¬ t = Q i t Q i Q i + 1
154 115 ad2antrr φ i 0 ..^ M t Q i Q i + 1 Q i D N :
155 simpr φ i 0 ..^ M t = Q i t = Q i
156 18 ssriv π π
157 fzossfz 0 ..^ M 0 M
158 157 44 sselid φ i 0 ..^ M i 0 M
159 43 158 ffvelrnd φ i 0 ..^ M Q i π π
160 156 159 sselid φ i 0 ..^ M Q i
161 160 adantr φ i 0 ..^ M t = Q i Q i
162 155 161 eqeltrd φ i 0 ..^ M t = Q i t
163 162 adantlr φ i 0 ..^ M t Q i Q i + 1 Q i t = Q i t
164 153 67 syl φ i 0 ..^ M t Q i Q i + 1 Q i ¬ t = Q i t
165 163 164 pm2.61dan φ i 0 ..^ M t Q i Q i + 1 Q i t
166 7 ad2antrr φ i 0 ..^ M t Q i Q i + 1 Q i X
167 165 166 resubcld φ i 0 ..^ M t Q i Q i + 1 Q i t X
168 154 167 ffvelrnd φ i 0 ..^ M t Q i Q i + 1 Q i D N t X
169 168 adantr φ i 0 ..^ M t Q i Q i + 1 Q i ¬ t = Q i D N t X
170 145 148 153 169 fvmptd φ i 0 ..^ M t Q i Q i + 1 Q i ¬ t = Q i s Q i Q i + 1 D N s X t = D N t X
171 144 170 ifeqda φ i 0 ..^ M t Q i Q i + 1 Q i if t = Q i D N Q i X s Q i Q i + 1 D N s X t = D N t X
172 171 mpteq2dva φ i 0 ..^ M t Q i Q i + 1 Q i if t = Q i D N Q i X s Q i Q i + 1 D N s X t = t Q i Q i + 1 Q i D N t X
173 115 adantr φ i 0 ..^ M D N :
174 simpr φ s Q i Q i + 1 Q i s Q i Q i + 1 Q i
175 elun s Q i Q i + 1 Q i s Q i Q i + 1 s Q i
176 174 175 sylib φ s Q i Q i + 1 Q i s Q i Q i + 1 s Q i
177 176 adantlr φ i 0 ..^ M s Q i Q i + 1 Q i s Q i Q i + 1 s Q i
178 elsni s Q i s = Q i
179 178 adantl φ i 0 ..^ M s Q i s = Q i
180 160 adantr φ i 0 ..^ M s Q i Q i
181 179 180 eqeltrd φ i 0 ..^ M s Q i s
182 181 ex φ i 0 ..^ M s Q i s
183 182 adantr φ i 0 ..^ M s Q i Q i + 1 Q i s Q i s
184 pm3.44 s Q i Q i + 1 s s Q i s s Q i Q i + 1 s Q i s
185 131 183 184 sylancr φ i 0 ..^ M s Q i Q i + 1 Q i s Q i Q i + 1 s Q i s
186 177 185 mpd φ i 0 ..^ M s Q i Q i + 1 Q i s
187 7 ad2antrr φ i 0 ..^ M s Q i Q i + 1 Q i X
188 186 187 resubcld φ i 0 ..^ M s Q i Q i + 1 Q i s X
189 eqid s Q i Q i + 1 Q i s X = s Q i Q i + 1 Q i s X
190 188 189 fmptd φ i 0 ..^ M s Q i Q i + 1 Q i s X : Q i Q i + 1 Q i
191 fcompt D N : s Q i Q i + 1 Q i s X : Q i Q i + 1 Q i D N s Q i Q i + 1 Q i s X = t Q i Q i + 1 Q i D N s Q i Q i + 1 Q i s X t
192 173 190 191 syl2anc φ i 0 ..^ M D N s Q i Q i + 1 Q i s X = t Q i Q i + 1 Q i D N s Q i Q i + 1 Q i s X t
193 eqidd φ i 0 ..^ M t Q i Q i + 1 Q i s Q i Q i + 1 Q i s X = s Q i Q i + 1 Q i s X
194 146 adantl φ i 0 ..^ M t Q i Q i + 1 Q i s = t s X = t X
195 simpr φ i 0 ..^ M t Q i Q i + 1 Q i t Q i Q i + 1 Q i
196 193 194 195 167 fvmptd φ i 0 ..^ M t Q i Q i + 1 Q i s Q i Q i + 1 Q i s X t = t X
197 196 fveq2d φ i 0 ..^ M t Q i Q i + 1 Q i D N s Q i Q i + 1 Q i s X t = D N t X
198 197 mpteq2dva φ i 0 ..^ M t Q i Q i + 1 Q i D N s Q i Q i + 1 Q i s X t = t Q i Q i + 1 Q i D N t X
199 192 198 eqtr2d φ i 0 ..^ M t Q i Q i + 1 Q i D N t X = D N s Q i Q i + 1 Q i s X
200 eqid s s X = s s X
201 simpr φ s s
202 94 adantr φ s X
203 201 202 negsubd φ s s + X = s X
204 203 eqcomd φ s s X = s + X
205 204 mpteq2dva φ s s X = s s + X
206 eqid s s + X = s s + X
207 206 addccncf X s s + X : cn
208 99 207 syl φ s s + X : cn
209 205 208 eqeltrd φ s s X : cn
210 209 adantr φ i 0 ..^ M s s X : cn
211 160 recnd φ i 0 ..^ M Q i
212 211 snssd φ i 0 ..^ M Q i
213 108 212 unssd φ i 0 ..^ M Q i Q i + 1 Q i
214 200 210 213 109 188 cncfmptssg φ i 0 ..^ M s Q i Q i + 1 Q i s X : Q i Q i + 1 Q i cn
215 116 122 eqeltrd φ D N : cn
216 215 adantr φ i 0 ..^ M D N : cn
217 214 216 cncfco φ i 0 ..^ M D N s Q i Q i + 1 Q i s X : Q i Q i + 1 Q i cn
218 eqid TopOpen fld = TopOpen fld
219 eqid TopOpen fld 𝑡 Q i Q i + 1 Q i = TopOpen fld 𝑡 Q i Q i + 1 Q i
220 218 cnfldtop TopOpen fld Top
221 unicntop = TopOpen fld
222 221 restid TopOpen fld Top TopOpen fld 𝑡 = TopOpen fld
223 220 222 ax-mp TopOpen fld 𝑡 = TopOpen fld
224 223 eqcomi TopOpen fld = TopOpen fld 𝑡
225 218 219 224 cncfcn Q i Q i + 1 Q i Q i Q i + 1 Q i cn = TopOpen fld 𝑡 Q i Q i + 1 Q i Cn TopOpen fld
226 213 113 225 sylancl φ i 0 ..^ M Q i Q i + 1 Q i cn = TopOpen fld 𝑡 Q i Q i + 1 Q i Cn TopOpen fld
227 217 226 eleqtrd φ i 0 ..^ M D N s Q i Q i + 1 Q i s X TopOpen fld 𝑡 Q i Q i + 1 Q i Cn TopOpen fld
228 199 227 eqeltrd φ i 0 ..^ M t Q i Q i + 1 Q i D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i Cn TopOpen fld
229 218 cnfldtopon TopOpen fld TopOn
230 resttopon TopOpen fld TopOn Q i Q i + 1 Q i TopOpen fld 𝑡 Q i Q i + 1 Q i TopOn Q i Q i + 1 Q i
231 229 213 230 sylancr φ i 0 ..^ M TopOpen fld 𝑡 Q i Q i + 1 Q i TopOn Q i Q i + 1 Q i
232 cncnp TopOpen fld 𝑡 Q i Q i + 1 Q i TopOn Q i Q i + 1 Q i TopOpen fld TopOn t Q i Q i + 1 Q i D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i Cn TopOpen fld t Q i Q i + 1 Q i D N t X : Q i Q i + 1 Q i s Q i Q i + 1 Q i t Q i Q i + 1 Q i D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i CnP TopOpen fld s
233 231 229 232 sylancl φ i 0 ..^ M t Q i Q i + 1 Q i D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i Cn TopOpen fld t Q i Q i + 1 Q i D N t X : Q i Q i + 1 Q i s Q i Q i + 1 Q i t Q i Q i + 1 Q i D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i CnP TopOpen fld s
234 228 233 mpbid φ i 0 ..^ M t Q i Q i + 1 Q i D N t X : Q i Q i + 1 Q i s Q i Q i + 1 Q i t Q i Q i + 1 Q i D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i CnP TopOpen fld s
235 234 simprd φ i 0 ..^ M s Q i Q i + 1 Q i t Q i Q i + 1 Q i D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i CnP TopOpen fld s
236 eqidd φ i 0 ..^ M Q i = Q i
237 elsng Q i Q i Q i Q i = Q i
238 160 237 syl φ i 0 ..^ M Q i Q i Q i = Q i
239 236 238 mpbird φ i 0 ..^ M Q i Q i
240 239 olcd φ i 0 ..^ M Q i Q i Q i + 1 Q i Q i
241 elun Q i Q i Q i + 1 Q i Q i Q i Q i + 1 Q i Q i
242 240 241 sylibr φ i 0 ..^ M Q i Q i Q i + 1 Q i
243 fveq2 s = Q i TopOpen fld 𝑡 Q i Q i + 1 Q i CnP TopOpen fld s = TopOpen fld 𝑡 Q i Q i + 1 Q i CnP TopOpen fld Q i
244 243 eleq2d s = Q i t Q i Q i + 1 Q i D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i CnP TopOpen fld s t Q i Q i + 1 Q i D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i CnP TopOpen fld Q i
245 244 rspccva s Q i Q i + 1 Q i t Q i Q i + 1 Q i D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i CnP TopOpen fld s Q i Q i Q i + 1 Q i t Q i Q i + 1 Q i D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i CnP TopOpen fld Q i
246 235 242 245 syl2anc φ i 0 ..^ M t Q i Q i + 1 Q i D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i CnP TopOpen fld Q i
247 172 246 eqeltrd φ i 0 ..^ M t Q i Q i + 1 Q i if t = Q i D N Q i X s Q i Q i + 1 D N s X t TopOpen fld 𝑡 Q i Q i + 1 Q i CnP TopOpen fld Q i
248 eqid t Q i Q i + 1 Q i if t = Q i D N Q i X s Q i Q i + 1 D N s X t = t Q i Q i + 1 Q i if t = Q i D N Q i X s Q i Q i + 1 D N s X t
249 219 218 248 139 108 211 ellimc φ i 0 ..^ M D N Q i X s Q i Q i + 1 D N s X lim Q i t Q i Q i + 1 Q i if t = Q i D N Q i X s Q i Q i + 1 D N s X t TopOpen fld 𝑡 Q i Q i + 1 Q i CnP TopOpen fld Q i
250 247 249 mpbird φ i 0 ..^ M D N Q i X s Q i Q i + 1 D N s X lim Q i
251 129 139 140 10 250 mullimcf φ i 0 ..^ M R D N Q i X t Q i Q i + 1 F Q i Q i + 1 t s Q i Q i + 1 D N s X t lim Q i
252 fvres t Q i Q i + 1 F Q i Q i + 1 t = F t
253 252 adantl φ i 0 ..^ M t Q i Q i + 1 F Q i Q i + 1 t = F t
254 253 oveq1d φ i 0 ..^ M t Q i Q i + 1 F Q i Q i + 1 t s Q i Q i + 1 D N s X t = F t s Q i Q i + 1 D N s X t
255 254 mpteq2dva φ i 0 ..^ M t Q i Q i + 1 F Q i Q i + 1 t s Q i Q i + 1 D N s X t = t Q i Q i + 1 F t s Q i Q i + 1 D N s X t
256 255 oveq1d φ i 0 ..^ M t Q i Q i + 1 F Q i Q i + 1 t s Q i Q i + 1 D N s X t lim Q i = t Q i Q i + 1 F t s Q i Q i + 1 D N s X t lim Q i
257 251 256 eleqtrd φ i 0 ..^ M R D N Q i X t Q i Q i + 1 F t s Q i Q i + 1 D N s X t lim Q i
258 eqidd φ i 0 ..^ M t Q i Q i + 1 s Q i Q i + 1 D N s X = s Q i Q i + 1 D N s X
259 simpr φ i 0 ..^ M t Q i Q i + 1 s = t s = t
260 259 oveq1d φ i 0 ..^ M t Q i Q i + 1 s = t s X = t X
261 260 fveq2d φ i 0 ..^ M t Q i Q i + 1 s = t D N s X = D N t X
262 simpr φ i 0 ..^ M t Q i Q i + 1 t Q i Q i + 1
263 115 ad2antrr φ i 0 ..^ M t Q i Q i + 1 D N :
264 263 71 ffvelrnd φ i 0 ..^ M t Q i Q i + 1 D N t X
265 258 261 262 264 fvmptd φ i 0 ..^ M t Q i Q i + 1 s Q i Q i + 1 D N s X t = D N t X
266 265 oveq2d φ i 0 ..^ M t Q i Q i + 1 F t s Q i Q i + 1 D N s X t = F t D N t X
267 266 mpteq2dva φ i 0 ..^ M t Q i Q i + 1 F t s Q i Q i + 1 D N s X t = t Q i Q i + 1 F t D N t X
268 267 oveq1d φ i 0 ..^ M t Q i Q i + 1 F t s Q i Q i + 1 D N s X t lim Q i = t Q i Q i + 1 F t D N t X lim Q i
269 257 268 eleqtrd φ i 0 ..^ M R D N Q i X t Q i Q i + 1 F t D N t X lim Q i
270 48 eqcomd φ i 0 ..^ M t Q i Q i + 1 F t D N t X = G Q i Q i + 1
271 270 oveq1d φ i 0 ..^ M t Q i Q i + 1 F t D N t X lim Q i = G Q i Q i + 1 lim Q i
272 269 271 eleqtrd φ i 0 ..^ M R D N Q i X G Q i Q i + 1 lim Q i
273 iftrue t = Q i + 1 if t = Q i + 1 D N Q i + 1 X s Q i Q i + 1 D N s X t = D N Q i + 1 X
274 oveq1 t = Q i + 1 t X = Q i + 1 X
275 274 eqcomd t = Q i + 1 Q i + 1 X = t X
276 275 fveq2d t = Q i + 1 D N Q i + 1 X = D N t X
277 273 276 eqtrd t = Q i + 1 if t = Q i + 1 D N Q i + 1 X s Q i Q i + 1 D N s X t = D N t X
278 277 adantl φ i 0 ..^ M t Q i Q i + 1 Q i + 1 t = Q i + 1 if t = Q i + 1 D N Q i + 1 X s Q i Q i + 1 D N s X t = D N t X
279 iffalse ¬ t = Q i + 1 if t = Q i + 1 D N Q i + 1 X s Q i Q i + 1 D N s X t = s Q i Q i + 1 D N s X t
280 279 adantl φ i 0 ..^ M t Q i Q i + 1 Q i + 1 ¬ t = Q i + 1 if t = Q i + 1 D N Q i + 1 X s Q i Q i + 1 D N s X t = s Q i Q i + 1 D N s X t
281 eqidd φ i 0 ..^ M t Q i Q i + 1 Q i + 1 ¬ t = Q i + 1 s Q i Q i + 1 D N s X = s Q i Q i + 1 D N s X
282 147 adantl φ i 0 ..^ M t Q i Q i + 1 Q i + 1 ¬ t = Q i + 1 s = t D N s X = D N t X
283 elun t Q i Q i + 1 Q i + 1 t Q i Q i + 1 t Q i + 1
284 283 biimpi t Q i Q i + 1 Q i + 1 t Q i Q i + 1 t Q i + 1
285 284 orcomd t Q i Q i + 1 Q i + 1 t Q i + 1 t Q i Q i + 1
286 285 ad2antlr φ i 0 ..^ M t Q i Q i + 1 Q i + 1 ¬ t = Q i + 1 t Q i + 1 t Q i Q i + 1
287 velsn t Q i + 1 t = Q i + 1
288 287 notbii ¬ t Q i + 1 ¬ t = Q i + 1
289 288 biimpri ¬ t = Q i + 1 ¬ t Q i + 1
290 289 adantl φ i 0 ..^ M t Q i Q i + 1 Q i + 1 ¬ t = Q i + 1 ¬ t Q i + 1
291 pm2.53 t Q i + 1 t Q i Q i + 1 ¬ t Q i + 1 t Q i Q i + 1
292 286 290 291 sylc φ i 0 ..^ M t Q i Q i + 1 Q i + 1 ¬ t = Q i + 1 t Q i Q i + 1
293 173 ad2antrr φ i 0 ..^ M t Q i Q i + 1 Q i + 1 ¬ t = Q i + 1 D N :
294 292 67 syl φ i 0 ..^ M t Q i Q i + 1 Q i + 1 ¬ t = Q i + 1 t
295 7 ad3antrrr φ i 0 ..^ M t Q i Q i + 1 Q i + 1 ¬ t = Q i + 1 X
296 294 295 resubcld φ i 0 ..^ M t Q i Q i + 1 Q i + 1 ¬ t = Q i + 1 t X
297 293 296 ffvelrnd φ i 0 ..^ M t Q i Q i + 1 Q i + 1 ¬ t = Q i + 1 D N t X
298 281 282 292 297 fvmptd φ i 0 ..^ M t Q i Q i + 1 Q i + 1 ¬ t = Q i + 1 s Q i Q i + 1 D N s X t = D N t X
299 280 298 eqtrd φ i 0 ..^ M t Q i Q i + 1 Q i + 1 ¬ t = Q i + 1 if t = Q i + 1 D N Q i + 1 X s Q i Q i + 1 D N s X t = D N t X
300 278 299 pm2.61dan φ i 0 ..^ M t Q i Q i + 1 Q i + 1 if t = Q i + 1 D N Q i + 1 X s Q i Q i + 1 D N s X t = D N t X
301 300 mpteq2dva φ i 0 ..^ M t Q i Q i + 1 Q i + 1 if t = Q i + 1 D N Q i + 1 X s Q i Q i + 1 D N s X t = t Q i Q i + 1 Q i + 1 D N t X
302 eqid t D N t X = t D N t X
303 106 a1i φ
304 simpr φ t t
305 7 adantr φ t X
306 304 305 resubcld φ t t X
307 92 103 303 303 306 cncfmptssg φ t t X : cn
308 307 215 cncfcompt φ t D N t X : cn
309 308 adantr φ i 0 ..^ M t D N t X : cn
310 105 a1i φ i 0 ..^ M Q i Q i + 1
311 fzofzp1 i 0 ..^ M i + 1 0 M
312 311 adantl φ i 0 ..^ M i + 1 0 M
313 43 312 ffvelrnd φ i 0 ..^ M Q i + 1 π π
314 156 313 sselid φ i 0 ..^ M Q i + 1
315 314 snssd φ i 0 ..^ M Q i + 1
316 310 315 unssd φ i 0 ..^ M Q i Q i + 1 Q i + 1
317 113 a1i φ i 0 ..^ M
318 173 adantr φ i 0 ..^ M t Q i Q i + 1 Q i + 1 D N :
319 316 sselda φ i 0 ..^ M t Q i Q i + 1 Q i + 1 t
320 7 ad2antrr φ i 0 ..^ M t Q i Q i + 1 Q i + 1 X
321 319 320 resubcld φ i 0 ..^ M t Q i Q i + 1 Q i + 1 t X
322 318 321 ffvelrnd φ i 0 ..^ M t Q i Q i + 1 Q i + 1 D N t X
323 322 recnd φ i 0 ..^ M t Q i Q i + 1 Q i + 1 D N t X
324 302 309 316 317 323 cncfmptssg φ i 0 ..^ M t Q i Q i + 1 Q i + 1 D N t X : Q i Q i + 1 Q i + 1 cn
325 156 106 sstri π π
326 325 313 sselid φ i 0 ..^ M Q i + 1
327 326 snssd φ i 0 ..^ M Q i + 1
328 108 327 unssd φ i 0 ..^ M Q i Q i + 1 Q i + 1
329 eqid TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 = TopOpen fld 𝑡 Q i Q i + 1 Q i + 1
330 218 329 224 cncfcn Q i Q i + 1 Q i + 1 Q i Q i + 1 Q i + 1 cn = TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 Cn TopOpen fld
331 328 113 330 sylancl φ i 0 ..^ M Q i Q i + 1 Q i + 1 cn = TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 Cn TopOpen fld
332 324 331 eleqtrd φ i 0 ..^ M t Q i Q i + 1 Q i + 1 D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 Cn TopOpen fld
333 resttopon TopOpen fld TopOn Q i Q i + 1 Q i + 1 TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 TopOn Q i Q i + 1 Q i + 1
334 229 328 333 sylancr φ i 0 ..^ M TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 TopOn Q i Q i + 1 Q i + 1
335 cncnp TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 TopOn Q i Q i + 1 Q i + 1 TopOpen fld TopOn t Q i Q i + 1 Q i + 1 D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 Cn TopOpen fld t Q i Q i + 1 Q i + 1 D N t X : Q i Q i + 1 Q i + 1 s Q i Q i + 1 Q i + 1 t Q i Q i + 1 Q i + 1 D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 CnP TopOpen fld s
336 334 229 335 sylancl φ i 0 ..^ M t Q i Q i + 1 Q i + 1 D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 Cn TopOpen fld t Q i Q i + 1 Q i + 1 D N t X : Q i Q i + 1 Q i + 1 s Q i Q i + 1 Q i + 1 t Q i Q i + 1 Q i + 1 D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 CnP TopOpen fld s
337 332 336 mpbid φ i 0 ..^ M t Q i Q i + 1 Q i + 1 D N t X : Q i Q i + 1 Q i + 1 s Q i Q i + 1 Q i + 1 t Q i Q i + 1 Q i + 1 D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 CnP TopOpen fld s
338 337 simprd φ i 0 ..^ M s Q i Q i + 1 Q i + 1 t Q i Q i + 1 Q i + 1 D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 CnP TopOpen fld s
339 eqidd φ i 0 ..^ M Q i + 1 = Q i + 1
340 elsng Q i + 1 Q i + 1 Q i + 1 Q i + 1 = Q i + 1
341 314 340 syl φ i 0 ..^ M Q i + 1 Q i + 1 Q i + 1 = Q i + 1
342 339 341 mpbird φ i 0 ..^ M Q i + 1 Q i + 1
343 342 olcd φ i 0 ..^ M Q i + 1 Q i Q i + 1 Q i + 1 Q i + 1
344 elun Q i + 1 Q i Q i + 1 Q i + 1 Q i + 1 Q i Q i + 1 Q i + 1 Q i + 1
345 343 344 sylibr φ i 0 ..^ M Q i + 1 Q i Q i + 1 Q i + 1
346 fveq2 s = Q i + 1 TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 CnP TopOpen fld s = TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 CnP TopOpen fld Q i + 1
347 346 eleq2d s = Q i + 1 t Q i Q i + 1 Q i + 1 D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 CnP TopOpen fld s t Q i Q i + 1 Q i + 1 D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 CnP TopOpen fld Q i + 1
348 347 rspccva s Q i Q i + 1 Q i + 1 t Q i Q i + 1 Q i + 1 D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 CnP TopOpen fld s Q i + 1 Q i Q i + 1 Q i + 1 t Q i Q i + 1 Q i + 1 D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 CnP TopOpen fld Q i + 1
349 338 345 348 syl2anc φ i 0 ..^ M t Q i Q i + 1 Q i + 1 D N t X TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 CnP TopOpen fld Q i + 1
350 301 349 eqeltrd φ i 0 ..^ M t Q i Q i + 1 Q i + 1 if t = Q i + 1 D N Q i + 1 X s Q i Q i + 1 D N s X t TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 CnP TopOpen fld Q i + 1
351 eqid t Q i Q i + 1 Q i + 1 if t = Q i + 1 D N Q i + 1 X s Q i Q i + 1 D N s X t = t Q i Q i + 1 Q i + 1 if t = Q i + 1 D N Q i + 1 X s Q i Q i + 1 D N s X t
352 329 218 351 139 108 326 ellimc φ i 0 ..^ M D N Q i + 1 X s Q i Q i + 1 D N s X lim Q i + 1 t Q i Q i + 1 Q i + 1 if t = Q i + 1 D N Q i + 1 X s Q i Q i + 1 D N s X t TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 CnP TopOpen fld Q i + 1
353 350 352 mpbird φ i 0 ..^ M D N Q i + 1 X s Q i Q i + 1 D N s X lim Q i + 1
354 129 139 140 11 353 mullimcf φ i 0 ..^ M L D N Q i + 1 X t Q i Q i + 1 F Q i Q i + 1 t s Q i Q i + 1 D N s X t lim Q i + 1
355 267 255 48 3eqtr4d φ i 0 ..^ M t Q i Q i + 1 F Q i Q i + 1 t s Q i Q i + 1 D N s X t = G Q i Q i + 1
356 355 oveq1d φ i 0 ..^ M t Q i Q i + 1 F Q i Q i + 1 t s Q i Q i + 1 D N s X t lim Q i + 1 = G Q i Q i + 1 lim Q i + 1
357 354 356 eleqtrd φ i 0 ..^ M L D N Q i + 1 X G Q i Q i + 1 lim Q i + 1
358 2 32 5 4 7 33 127 272 357 fourierdlem93 φ π π G t dt = - π - X π X G X + s ds
359 3 a1i φ s - π - X π X G = t π π F t D N t X
360 fveq2 t = X + s F t = F X + s
361 360 oveq1d t = X + s F t D N t X = F X + s D N t X
362 361 adantl φ s - π - X π X t = X + s F t D N t X = F X + s D N t X
363 oveq1 t = X + s t X = X + s - X
364 94 adantr φ s - π - X π X X
365 36 7 resubcld φ - π - X
366 365 adantr φ s - π - X π X - π - X
367 39 7 resubcld φ π X
368 367 adantr φ s - π - X π X π X
369 simpr φ s - π - X π X s - π - X π X
370 eliccre - π - X π X s - π - X π X s
371 366 368 369 370 syl3anc φ s - π - X π X s
372 371 recnd φ s - π - X π X s
373 364 372 pncan2d φ s - π - X π X X + s - X = s
374 363 373 sylan9eqr φ s - π - X π X t = X + s t X = s
375 374 fveq2d φ s - π - X π X t = X + s D N t X = D N s
376 375 oveq2d φ s - π - X π X t = X + s F X + s D N t X = F X + s D N s
377 362 376 eqtrd φ s - π - X π X t = X + s F t D N t X = F X + s D N s
378 16 a1i φ s - π - X π X π
379 15 a1i φ s - π - X π X π
380 7 adantr φ s - π - X π X X
381 380 371 readdcld φ s - π - X π X X + s
382 36 recnd φ π
383 94 382 pncan3d φ X + π - X = π
384 383 eqcomd φ π = X + π - X
385 384 adantr φ s - π - X π X π = X + π - X
386 elicc2 - π - X π X s - π - X π X s - π - X s s π X
387 366 368 386 syl2anc φ s - π - X π X s - π - X π X s - π - X s s π X
388 369 387 mpbid φ s - π - X π X s - π - X s s π X
389 388 simp2d φ s - π - X π X - π - X s
390 366 371 380 389 leadd2dd φ s - π - X π X X + π - X X + s
391 385 390 eqbrtrd φ s - π - X π X π X + s
392 388 simp3d φ s - π - X π X s π X
393 371 368 380 392 leadd2dd φ s - π - X π X X + s X + π - X
394 picn π
395 394 a1i φ s - π - X π X π
396 364 395 pncan3d φ s - π - X π X X + π - X = π
397 393 396 breqtrd φ s - π - X π X X + s π
398 378 379 381 391 397 eliccd φ s - π - X π X X + s π π
399 8 adantr φ s - π - X π X F : π π
400 399 398 ffvelrnd φ s - π - X π X F X + s
401 371 111 syldan φ s - π - X π X D N s
402 400 401 mulcld φ s - π - X π X F X + s D N s
403 359 377 398 402 fvmptd φ s - π - X π X G X + s = F X + s D N s
404 403 itgeq2dv φ - π - X π X G X + s ds = - π - X π X F X + s D N s ds
405 29 358 404 3eqtrd φ π π F t D N t X dt = - π - X π X F X + s D N s ds