Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem102.f |
|
2 |
|
fourierdlem102.t |
|
3 |
|
fourierdlem102.per |
|
4 |
|
fourierdlem102.g |
|
5 |
|
fourierdlem102.dmdv |
|
6 |
|
fourierdlem102.gcn |
|
7 |
|
fourierdlem102.rlim |
|
8 |
|
fourierdlem102.llim |
|
9 |
|
fourierdlem102.x |
|
10 |
|
fourierdlem102.p |
|
11 |
|
fourierdlem102.e |
|
12 |
|
fourierdlem102.h |
|
13 |
|
fourierdlem102.m |
|
14 |
|
fourierdlem102.q |
|
15 |
|
2z |
|
16 |
15
|
a1i |
|
17 |
|
tpfi |
|
18 |
17
|
a1i |
|
19 |
|
pire |
|
20 |
19
|
renegcli |
|
21 |
20
|
rexri |
|
22 |
19
|
rexri |
|
23 |
|
negpilt0 |
|
24 |
|
pipos |
|
25 |
|
0re |
|
26 |
20 25 19
|
lttri |
|
27 |
23 24 26
|
mp2an |
|
28 |
20 19 27
|
ltleii |
|
29 |
|
prunioo |
|
30 |
21 22 28 29
|
mp3an |
|
31 |
30
|
difeq1i |
|
32 |
|
difundir |
|
33 |
31 32
|
eqtr3i |
|
34 |
|
prfi |
|
35 |
|
diffi |
|
36 |
34 35
|
mp1i |
|
37 |
|
unfi |
|
38 |
5 36 37
|
syl2anc |
|
39 |
33 38
|
eqeltrid |
|
40 |
|
unfi |
|
41 |
18 39 40
|
syl2anc |
|
42 |
12 41
|
eqeltrid |
|
43 |
|
hashcl |
|
44 |
42 43
|
syl |
|
45 |
44
|
nn0zd |
|
46 |
20 27
|
ltneii |
|
47 |
|
hashprg |
|
48 |
20 19 47
|
mp2an |
|
49 |
46 48
|
mpbi |
|
50 |
17
|
elexi |
|
51 |
|
ovex |
|
52 |
|
difexg |
|
53 |
51 52
|
ax-mp |
|
54 |
50 53
|
unex |
|
55 |
12 54
|
eqeltri |
|
56 |
|
negex |
|
57 |
56
|
tpid1 |
|
58 |
19
|
elexi |
|
59 |
58
|
tpid2 |
|
60 |
|
prssi |
|
61 |
57 59 60
|
mp2an |
|
62 |
|
ssun1 |
|
63 |
62 12
|
sseqtrri |
|
64 |
61 63
|
sstri |
|
65 |
|
hashss |
|
66 |
55 64 65
|
mp2an |
|
67 |
66
|
a1i |
|
68 |
49 67
|
eqbrtrrid |
|
69 |
|
eluz2 |
|
70 |
16 45 68 69
|
syl3anbrc |
|
71 |
|
uz2m1nn |
|
72 |
70 71
|
syl |
|
73 |
13 72
|
eqeltrid |
|
74 |
20
|
a1i |
|
75 |
19
|
a1i |
|
76 |
|
negpitopissre |
|
77 |
27
|
a1i |
|
78 |
|
picn |
|
79 |
78
|
2timesi |
|
80 |
78 78
|
subnegi |
|
81 |
79 2 80
|
3eqtr4i |
|
82 |
74 75 77 81 11
|
fourierdlem4 |
|
83 |
82 9
|
ffvelrnd |
|
84 |
76 83
|
sselid |
|
85 |
74 75 84
|
3jca |
|
86 |
|
fvex |
|
87 |
56 58 86
|
tpss |
|
88 |
85 87
|
sylib |
|
89 |
|
iccssre |
|
90 |
20 19 89
|
mp2an |
|
91 |
|
ssdifss |
|
92 |
90 91
|
mp1i |
|
93 |
88 92
|
unssd |
|
94 |
12 93
|
eqsstrid |
|
95 |
42 94 14 13
|
fourierdlem36 |
|
96 |
|
isof1o |
|
97 |
|
f1of |
|
98 |
95 96 97
|
3syl |
|
99 |
98 94
|
fssd |
|
100 |
|
reex |
|
101 |
|
ovex |
|
102 |
100 101
|
elmap |
|
103 |
99 102
|
sylibr |
|
104 |
|
fveq2 |
|
105 |
104
|
adantl |
|
106 |
99
|
ffvelrnda |
|
107 |
106
|
leidd |
|
108 |
107
|
adantr |
|
109 |
105 108
|
eqbrtrd |
|
110 |
|
elfzelz |
|
111 |
110
|
zred |
|
112 |
111
|
ad2antlr |
|
113 |
|
elfzle1 |
|
114 |
113
|
ad2antlr |
|
115 |
|
neqne |
|
116 |
115
|
necomd |
|
117 |
116
|
adantl |
|
118 |
112 114 117
|
ne0gt0d |
|
119 |
|
nnssnn0 |
|
120 |
|
nn0uz |
|
121 |
119 120
|
sseqtri |
|
122 |
121 73
|
sselid |
|
123 |
|
eluzfz1 |
|
124 |
122 123
|
syl |
|
125 |
98 124
|
ffvelrnd |
|
126 |
94 125
|
sseldd |
|
127 |
126
|
ad2antrr |
|
128 |
106
|
adantr |
|
129 |
|
simpr |
|
130 |
95
|
ad2antrr |
|
131 |
124
|
anim1i |
|
132 |
131
|
adantr |
|
133 |
|
isorel |
|
134 |
130 132 133
|
syl2anc |
|
135 |
129 134
|
mpbid |
|
136 |
127 128 135
|
ltled |
|
137 |
118 136
|
syldan |
|
138 |
109 137
|
pm2.61dan |
|
139 |
138
|
adantr |
|
140 |
|
simpr |
|
141 |
139 140
|
breqtrd |
|
142 |
74
|
rexrd |
|
143 |
75
|
rexrd |
|
144 |
|
lbicc2 |
|
145 |
21 22 28 144
|
mp3an |
|
146 |
145
|
a1i |
|
147 |
|
ubicc2 |
|
148 |
21 22 28 147
|
mp3an |
|
149 |
148
|
a1i |
|
150 |
|
iocssicc |
|
151 |
150 83
|
sselid |
|
152 |
|
tpssi |
|
153 |
146 149 151 152
|
syl3anc |
|
154 |
|
difssd |
|
155 |
153 154
|
unssd |
|
156 |
12 155
|
eqsstrid |
|
157 |
156 125
|
sseldd |
|
158 |
|
iccgelb |
|
159 |
142 143 157 158
|
syl3anc |
|
160 |
159
|
ad2antrr |
|
161 |
126
|
ad2antrr |
|
162 |
20
|
a1i |
|
163 |
161 162
|
letri3d |
|
164 |
141 160 163
|
mpbir2and |
|
165 |
63 57
|
sselii |
|
166 |
|
f1ofo |
|
167 |
96 166
|
syl |
|
168 |
|
forn |
|
169 |
95 167 168
|
3syl |
|
170 |
165 169
|
eleqtrrid |
|
171 |
|
ffn |
|
172 |
|
fvelrnb |
|
173 |
98 171 172
|
3syl |
|
174 |
170 173
|
mpbid |
|
175 |
164 174
|
r19.29a |
|
176 |
63 59
|
sselii |
|
177 |
176 169
|
eleqtrrid |
|
178 |
|
fvelrnb |
|
179 |
98 171 178
|
3syl |
|
180 |
177 179
|
mpbid |
|
181 |
98 156
|
fssd |
|
182 |
|
eluzfz2 |
|
183 |
122 182
|
syl |
|
184 |
181 183
|
ffvelrnd |
|
185 |
|
iccleub |
|
186 |
142 143 184 185
|
syl3anc |
|
187 |
186
|
3ad2ant1 |
|
188 |
|
id |
|
189 |
188
|
eqcomd |
|
190 |
189
|
3ad2ant3 |
|
191 |
107
|
adantr |
|
192 |
|
fveq2 |
|
193 |
192
|
adantl |
|
194 |
191 193
|
breqtrd |
|
195 |
111
|
ad2antlr |
|
196 |
|
elfzel2 |
|
197 |
196
|
zred |
|
198 |
197
|
ad2antlr |
|
199 |
|
elfzle2 |
|
200 |
199
|
ad2antlr |
|
201 |
|
neqne |
|
202 |
201
|
necomd |
|
203 |
202
|
adantl |
|
204 |
195 198 200 203
|
leneltd |
|
205 |
106
|
adantr |
|
206 |
90 184
|
sselid |
|
207 |
206
|
ad2antrr |
|
208 |
|
simpr |
|
209 |
95
|
ad2antrr |
|
210 |
|
simpr |
|
211 |
183
|
adantr |
|
212 |
210 211
|
jca |
|
213 |
212
|
adantr |
|
214 |
|
isorel |
|
215 |
209 213 214
|
syl2anc |
|
216 |
208 215
|
mpbid |
|
217 |
205 207 216
|
ltled |
|
218 |
204 217
|
syldan |
|
219 |
194 218
|
pm2.61dan |
|
220 |
219
|
3adant3 |
|
221 |
190 220
|
eqbrtrd |
|
222 |
206
|
3ad2ant1 |
|
223 |
19
|
a1i |
|
224 |
222 223
|
letri3d |
|
225 |
187 221 224
|
mpbir2and |
|
226 |
225
|
rexlimdv3a |
|
227 |
180 226
|
mpd |
|
228 |
|
elfzoelz |
|
229 |
228
|
zred |
|
230 |
229
|
ltp1d |
|
231 |
230
|
adantl |
|
232 |
|
elfzofz |
|
233 |
|
fzofzp1 |
|
234 |
232 233
|
jca |
|
235 |
|
isorel |
|
236 |
95 234 235
|
syl2an |
|
237 |
231 236
|
mpbid |
|
238 |
237
|
ralrimiva |
|
239 |
175 227 238
|
jca31 |
|
240 |
10
|
fourierdlem2 |
|
241 |
73 240
|
syl |
|
242 |
103 239 241
|
mpbir2and |
|
243 |
4
|
reseq1i |
|
244 |
21
|
a1i |
|
245 |
22
|
a1i |
|
246 |
181
|
adantr |
|
247 |
|
simpr |
|
248 |
244 245 246 247
|
fourierdlem27 |
|
249 |
248
|
resabs1d |
|
250 |
243 249
|
eqtr2id |
|
251 |
6 10 73 242 12 169
|
fourierdlem38 |
|
252 |
250 251
|
eqeltrd |
|
253 |
250
|
oveq1d |
|
254 |
6
|
adantr |
|
255 |
7
|
adantlr |
|
256 |
8
|
adantlr |
|
257 |
95
|
adantr |
|
258 |
257 96 97
|
3syl |
|
259 |
84
|
adantr |
|
260 |
257 167 168
|
3syl |
|
261 |
254 255 256 257 258 247 237 248 259 12 260
|
fourierdlem46 |
|
262 |
261
|
simpld |
|
263 |
253 262
|
eqnetrd |
|
264 |
250
|
oveq1d |
|
265 |
261
|
simprd |
|
266 |
264 265
|
eqnetrd |
|
267 |
1 2 3 9 10 73 242 252 263 266
|
fourierdlem94 |
|