Metamath Proof Explorer


Theorem fourierdlem102

Description: For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem102.f φ F :
fourierdlem102.t T = 2 π
fourierdlem102.per φ x F x + T = F x
fourierdlem102.g G = F π π
fourierdlem102.dmdv φ π π dom G Fin
fourierdlem102.gcn φ G : dom G cn
fourierdlem102.rlim φ x π π dom G G x +∞ lim x
fourierdlem102.llim φ x π π dom G G −∞ x lim x
fourierdlem102.x φ X
fourierdlem102.p P = n p 0 n | p 0 = π p n = π i 0 ..^ n p i < p i + 1
fourierdlem102.e E = x x + π x T T
fourierdlem102.h H = π π E X π π dom G
fourierdlem102.m M = H 1
fourierdlem102.q Q = ι g | g Isom < , < 0 M H
Assertion fourierdlem102 φ F −∞ X lim X F X +∞ lim X

Proof

Step Hyp Ref Expression
1 fourierdlem102.f φ F :
2 fourierdlem102.t T = 2 π
3 fourierdlem102.per φ x F x + T = F x
4 fourierdlem102.g G = F π π
5 fourierdlem102.dmdv φ π π dom G Fin
6 fourierdlem102.gcn φ G : dom G cn
7 fourierdlem102.rlim φ x π π dom G G x +∞ lim x
8 fourierdlem102.llim φ x π π dom G G −∞ x lim x
9 fourierdlem102.x φ X
10 fourierdlem102.p P = n p 0 n | p 0 = π p n = π i 0 ..^ n p i < p i + 1
11 fourierdlem102.e E = x x + π x T T
12 fourierdlem102.h H = π π E X π π dom G
13 fourierdlem102.m M = H 1
14 fourierdlem102.q Q = ι g | g Isom < , < 0 M H
15 2z 2
16 15 a1i φ 2
17 tpfi π π E X Fin
18 17 a1i φ π π E X Fin
19 pire π
20 19 renegcli π
21 20 rexri π *
22 19 rexri π *
23 negpilt0 π < 0
24 pipos 0 < π
25 0re 0
26 20 25 19 lttri π < 0 0 < π π < π
27 23 24 26 mp2an π < π
28 20 19 27 ltleii π π
29 prunioo π * π * π π π π π π = π π
30 21 22 28 29 mp3an π π π π = π π
31 30 difeq1i π π π π dom G = π π dom G
32 difundir π π π π dom G = π π dom G π π dom G
33 31 32 eqtr3i π π dom G = π π dom G π π dom G
34 prfi π π Fin
35 diffi π π Fin π π dom G Fin
36 34 35 mp1i φ π π dom G Fin
37 unfi π π dom G Fin π π dom G Fin π π dom G π π dom G Fin
38 5 36 37 syl2anc φ π π dom G π π dom G Fin
39 33 38 eqeltrid φ π π dom G Fin
40 unfi π π E X Fin π π dom G Fin π π E X π π dom G Fin
41 18 39 40 syl2anc φ π π E X π π dom G Fin
42 12 41 eqeltrid φ H Fin
43 hashcl H Fin H 0
44 42 43 syl φ H 0
45 44 nn0zd φ H
46 20 27 ltneii π π
47 hashprg π π π π π π = 2
48 20 19 47 mp2an π π π π = 2
49 46 48 mpbi π π = 2
50 17 elexi π π E X V
51 ovex π π V
52 difexg π π V π π dom G V
53 51 52 ax-mp π π dom G V
54 50 53 unex π π E X π π dom G V
55 12 54 eqeltri H V
56 negex π V
57 56 tpid1 π π π E X
58 19 elexi π V
59 58 tpid2 π π π E X
60 prssi π π π E X π π π E X π π π π E X
61 57 59 60 mp2an π π π π E X
62 ssun1 π π E X π π E X π π dom G
63 62 12 sseqtrri π π E X H
64 61 63 sstri π π H
65 hashss H V π π H π π H
66 55 64 65 mp2an π π H
67 66 a1i φ π π H
68 49 67 eqbrtrrid φ 2 H
69 eluz2 H 2 2 H 2 H
70 16 45 68 69 syl3anbrc φ H 2
71 uz2m1nn H 2 H 1
72 70 71 syl φ H 1
73 13 72 eqeltrid φ M
74 20 a1i φ π
75 19 a1i φ π
76 negpitopissre π π
77 27 a1i φ π < π
78 picn π
79 78 2timesi 2 π = π + π
80 78 78 subnegi π π = π + π
81 79 2 80 3eqtr4i T = π π
82 74 75 77 81 11 fourierdlem4 φ E : π π
83 82 9 ffvelrnd φ E X π π
84 76 83 sselid φ E X
85 74 75 84 3jca φ π π E X
86 fvex E X V
87 56 58 86 tpss π π E X π π E X
88 85 87 sylib φ π π E X
89 iccssre π π π π
90 20 19 89 mp2an π π
91 ssdifss π π π π dom G
92 90 91 mp1i φ π π dom G
93 88 92 unssd φ π π E X π π dom G
94 12 93 eqsstrid φ H
95 42 94 14 13 fourierdlem36 φ Q Isom < , < 0 M H
96 isof1o Q Isom < , < 0 M H Q : 0 M 1-1 onto H
97 f1of Q : 0 M 1-1 onto H Q : 0 M H
98 95 96 97 3syl φ Q : 0 M H
99 98 94 fssd φ Q : 0 M
100 reex V
101 ovex 0 M V
102 100 101 elmap Q 0 M Q : 0 M
103 99 102 sylibr φ Q 0 M
104 fveq2 0 = i Q 0 = Q i
105 104 adantl φ i 0 M 0 = i Q 0 = Q i
106 99 ffvelrnda φ i 0 M Q i
107 106 leidd φ i 0 M Q i Q i
108 107 adantr φ i 0 M 0 = i Q i Q i
109 105 108 eqbrtrd φ i 0 M 0 = i Q 0 Q i
110 elfzelz i 0 M i
111 110 zred i 0 M i
112 111 ad2antlr φ i 0 M ¬ 0 = i i
113 elfzle1 i 0 M 0 i
114 113 ad2antlr φ i 0 M ¬ 0 = i 0 i
115 neqne ¬ 0 = i 0 i
116 115 necomd ¬ 0 = i i 0
117 116 adantl φ i 0 M ¬ 0 = i i 0
118 112 114 117 ne0gt0d φ i 0 M ¬ 0 = i 0 < i
119 nnssnn0 0
120 nn0uz 0 = 0
121 119 120 sseqtri 0
122 121 73 sselid φ M 0
123 eluzfz1 M 0 0 0 M
124 122 123 syl φ 0 0 M
125 98 124 ffvelrnd φ Q 0 H
126 94 125 sseldd φ Q 0
127 126 ad2antrr φ i 0 M 0 < i Q 0
128 106 adantr φ i 0 M 0 < i Q i
129 simpr φ i 0 M 0 < i 0 < i
130 95 ad2antrr φ i 0 M 0 < i Q Isom < , < 0 M H
131 124 anim1i φ i 0 M 0 0 M i 0 M
132 131 adantr φ i 0 M 0 < i 0 0 M i 0 M
133 isorel Q Isom < , < 0 M H 0 0 M i 0 M 0 < i Q 0 < Q i
134 130 132 133 syl2anc φ i 0 M 0 < i 0 < i Q 0 < Q i
135 129 134 mpbid φ i 0 M 0 < i Q 0 < Q i
136 127 128 135 ltled φ i 0 M 0 < i Q 0 Q i
137 118 136 syldan φ i 0 M ¬ 0 = i Q 0 Q i
138 109 137 pm2.61dan φ i 0 M Q 0 Q i
139 138 adantr φ i 0 M Q i = π Q 0 Q i
140 simpr φ i 0 M Q i = π Q i = π
141 139 140 breqtrd φ i 0 M Q i = π Q 0 π
142 74 rexrd φ π *
143 75 rexrd φ π *
144 lbicc2 π * π * π π π π π
145 21 22 28 144 mp3an π π π
146 145 a1i φ π π π
147 ubicc2 π * π * π π π π π
148 21 22 28 147 mp3an π π π
149 148 a1i φ π π π
150 iocssicc π π π π
151 150 83 sselid φ E X π π
152 tpssi π π π π π π E X π π π π E X π π
153 146 149 151 152 syl3anc φ π π E X π π
154 difssd φ π π dom G π π
155 153 154 unssd φ π π E X π π dom G π π
156 12 155 eqsstrid φ H π π
157 156 125 sseldd φ Q 0 π π
158 iccgelb π * π * Q 0 π π π Q 0
159 142 143 157 158 syl3anc φ π Q 0
160 159 ad2antrr φ i 0 M Q i = π π Q 0
161 126 ad2antrr φ i 0 M Q i = π Q 0
162 20 a1i φ i 0 M Q i = π π
163 161 162 letri3d φ i 0 M Q i = π Q 0 = π Q 0 π π Q 0
164 141 160 163 mpbir2and φ i 0 M Q i = π Q 0 = π
165 63 57 sselii π H
166 f1ofo Q : 0 M 1-1 onto H Q : 0 M onto H
167 96 166 syl Q Isom < , < 0 M H Q : 0 M onto H
168 forn Q : 0 M onto H ran Q = H
169 95 167 168 3syl φ ran Q = H
170 165 169 eleqtrrid φ π ran Q
171 ffn Q : 0 M H Q Fn 0 M
172 fvelrnb Q Fn 0 M π ran Q i 0 M Q i = π
173 98 171 172 3syl φ π ran Q i 0 M Q i = π
174 170 173 mpbid φ i 0 M Q i = π
175 164 174 r19.29a φ Q 0 = π
176 63 59 sselii π H
177 176 169 eleqtrrid φ π ran Q
178 fvelrnb Q Fn 0 M π ran Q i 0 M Q i = π
179 98 171 178 3syl φ π ran Q i 0 M Q i = π
180 177 179 mpbid φ i 0 M Q i = π
181 98 156 fssd φ Q : 0 M π π
182 eluzfz2 M 0 M 0 M
183 122 182 syl φ M 0 M
184 181 183 ffvelrnd φ Q M π π
185 iccleub π * π * Q M π π Q M π
186 142 143 184 185 syl3anc φ Q M π
187 186 3ad2ant1 φ i 0 M Q i = π Q M π
188 id Q i = π Q i = π
189 188 eqcomd Q i = π π = Q i
190 189 3ad2ant3 φ i 0 M Q i = π π = Q i
191 107 adantr φ i 0 M i = M Q i Q i
192 fveq2 i = M Q i = Q M
193 192 adantl φ i 0 M i = M Q i = Q M
194 191 193 breqtrd φ i 0 M i = M Q i Q M
195 111 ad2antlr φ i 0 M ¬ i = M i
196 elfzel2 i 0 M M
197 196 zred i 0 M M
198 197 ad2antlr φ i 0 M ¬ i = M M
199 elfzle2 i 0 M i M
200 199 ad2antlr φ i 0 M ¬ i = M i M
201 neqne ¬ i = M i M
202 201 necomd ¬ i = M M i
203 202 adantl φ i 0 M ¬ i = M M i
204 195 198 200 203 leneltd φ i 0 M ¬ i = M i < M
205 106 adantr φ i 0 M i < M Q i
206 90 184 sselid φ Q M
207 206 ad2antrr φ i 0 M i < M Q M
208 simpr φ i 0 M i < M i < M
209 95 ad2antrr φ i 0 M i < M Q Isom < , < 0 M H
210 simpr φ i 0 M i 0 M
211 183 adantr φ i 0 M M 0 M
212 210 211 jca φ i 0 M i 0 M M 0 M
213 212 adantr φ i 0 M i < M i 0 M M 0 M
214 isorel Q Isom < , < 0 M H i 0 M M 0 M i < M Q i < Q M
215 209 213 214 syl2anc φ i 0 M i < M i < M Q i < Q M
216 208 215 mpbid φ i 0 M i < M Q i < Q M
217 205 207 216 ltled φ i 0 M i < M Q i Q M
218 204 217 syldan φ i 0 M ¬ i = M Q i Q M
219 194 218 pm2.61dan φ i 0 M Q i Q M
220 219 3adant3 φ i 0 M Q i = π Q i Q M
221 190 220 eqbrtrd φ i 0 M Q i = π π Q M
222 206 3ad2ant1 φ i 0 M Q i = π Q M
223 19 a1i φ i 0 M Q i = π π
224 222 223 letri3d φ i 0 M Q i = π Q M = π Q M π π Q M
225 187 221 224 mpbir2and φ i 0 M Q i = π Q M = π
226 225 rexlimdv3a φ i 0 M Q i = π Q M = π
227 180 226 mpd φ Q M = π
228 elfzoelz i 0 ..^ M i
229 228 zred i 0 ..^ M i
230 229 ltp1d i 0 ..^ M i < i + 1
231 230 adantl φ i 0 ..^ M i < i + 1
232 elfzofz i 0 ..^ M i 0 M
233 fzofzp1 i 0 ..^ M i + 1 0 M
234 232 233 jca i 0 ..^ M i 0 M i + 1 0 M
235 isorel Q Isom < , < 0 M H i 0 M i + 1 0 M i < i + 1 Q i < Q i + 1
236 95 234 235 syl2an φ i 0 ..^ M i < i + 1 Q i < Q i + 1
237 231 236 mpbid φ i 0 ..^ M Q i < Q i + 1
238 237 ralrimiva φ i 0 ..^ M Q i < Q i + 1
239 175 227 238 jca31 φ Q 0 = π Q M = π i 0 ..^ M Q i < Q i + 1
240 10 fourierdlem2 M Q P M Q 0 M Q 0 = π Q M = π i 0 ..^ M Q i < Q i + 1
241 73 240 syl φ Q P M Q 0 M Q 0 = π Q M = π i 0 ..^ M Q i < Q i + 1
242 103 239 241 mpbir2and φ Q P M
243 4 reseq1i G Q i Q i + 1 = F π π Q i Q i + 1
244 21 a1i φ i 0 ..^ M π *
245 22 a1i φ i 0 ..^ M π *
246 181 adantr φ i 0 ..^ M Q : 0 M π π
247 simpr φ i 0 ..^ M i 0 ..^ M
248 244 245 246 247 fourierdlem27 φ i 0 ..^ M Q i Q i + 1 π π
249 248 resabs1d φ i 0 ..^ M F π π Q i Q i + 1 = F Q i Q i + 1
250 243 249 eqtr2id φ i 0 ..^ M F Q i Q i + 1 = G Q i Q i + 1
251 6 10 73 242 12 169 fourierdlem38 φ i 0 ..^ M G Q i Q i + 1 : Q i Q i + 1 cn
252 250 251 eqeltrd φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
253 250 oveq1d φ i 0 ..^ M F Q i Q i + 1 lim Q i = G Q i Q i + 1 lim Q i
254 6 adantr φ i 0 ..^ M G : dom G cn
255 7 adantlr φ i 0 ..^ M x π π dom G G x +∞ lim x
256 8 adantlr φ i 0 ..^ M x π π dom G G −∞ x lim x
257 95 adantr φ i 0 ..^ M Q Isom < , < 0 M H
258 257 96 97 3syl φ i 0 ..^ M Q : 0 M H
259 84 adantr φ i 0 ..^ M E X
260 257 167 168 3syl φ i 0 ..^ M ran Q = H
261 254 255 256 257 258 247 237 248 259 12 260 fourierdlem46 φ i 0 ..^ M G Q i Q i + 1 lim Q i G Q i Q i + 1 lim Q i + 1
262 261 simpld φ i 0 ..^ M G Q i Q i + 1 lim Q i
263 253 262 eqnetrd φ i 0 ..^ M F Q i Q i + 1 lim Q i
264 250 oveq1d φ i 0 ..^ M F Q i Q i + 1 lim Q i + 1 = G Q i Q i + 1 lim Q i + 1
265 261 simprd φ i 0 ..^ M G Q i Q i + 1 lim Q i + 1
266 264 265 eqnetrd φ i 0 ..^ M F Q i Q i + 1 lim Q i + 1
267 1 2 3 9 10 73 242 252 263 266 fourierdlem94 φ F −∞ X lim X F X +∞ lim X