Metamath Proof Explorer


Theorem fourierdlem106

Description: For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem106.f φF:
fourierdlem106.t T=2π
fourierdlem106.per φxFx+T=Fx
fourierdlem106.g G=Fππ
fourierdlem106.dmdv φππdomGFin
fourierdlem106.dvcn φG:domGcn
fourierdlem106.rlim φxππdomGGx+∞limx
fourierdlem106.llim φxππdomGG−∞xlimx
fourierdlem106.x φX
Assertion fourierdlem106 φF−∞XlimXFX+∞limX

Proof

Step Hyp Ref Expression
1 fourierdlem106.f φF:
2 fourierdlem106.t T=2π
3 fourierdlem106.per φxFx+T=Fx
4 fourierdlem106.g G=Fππ
5 fourierdlem106.dmdv φππdomGFin
6 fourierdlem106.dvcn φG:domGcn
7 fourierdlem106.rlim φxππdomGGx+∞limx
8 fourierdlem106.llim φxππdomGG−∞xlimx
9 fourierdlem106.x φX
10 eqid kw0k|w0=πwk=πz0..^kwz<wz+1=kw0k|w0=πwk=πz0..^kwz<wz+1
11 id y=xy=x
12 oveq2 y=xπy=πx
13 12 oveq1d y=xπyT=πxT
14 13 fveq2d y=xπyT=πxT
15 14 oveq1d y=xπyTT=πxTT
16 11 15 oveq12d y=xy+πyTT=x+πxTT
17 16 cbvmptv yy+πyTT=xx+πxTT
18 eqid ππyy+πyTTXππdomG=ππyy+πyTTXππdomG
19 eqid ππyy+πyTTXππdomG1=ππyy+πyTTXππdomG1
20 isoeq1 g=fgIsom<,<0ππyy+πyTTXππdomG1ππyy+πyTTXππdomGfIsom<,<0ππyy+πyTTXππdomG1ππyy+πyTTXππdomG
21 20 cbviotavw ιg|gIsom<,<0ππyy+πyTTXππdomG1ππyy+πyTTXππdomG=ιf|fIsom<,<0ππyy+πyTTXππdomG1ππyy+πyTTXππdomG
22 1 2 3 4 5 6 7 8 9 10 17 18 19 21 fourierdlem102 φF−∞XlimXFX+∞limX