Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem109.a |
|
2 |
|
fourierdlem109.b |
|
3 |
|
fourierdlem109.t |
|
4 |
|
fourierdlem109.x |
|
5 |
|
fourierdlem109.p |
|
6 |
|
fourierdlem109.m |
|
7 |
|
fourierdlem109.q |
|
8 |
|
fourierdlem109.f |
|
9 |
|
fourierdlem109.fper |
|
10 |
|
fourierdlem109.fcn |
|
11 |
|
fourierdlem109.r |
|
12 |
|
fourierdlem109.l |
|
13 |
|
fourierdlem109.o |
|
14 |
|
fourierdlem109.h |
|
15 |
|
fourierdlem109.n |
|
16 |
|
fourierdlem109.16 |
|
17 |
|
fourierdlem109.17 |
|
18 |
|
fourierdlem109.18 |
|
19 |
|
fourierdlem109.19 |
|
20 |
1
|
adantr |
|
21 |
2
|
adantr |
|
22 |
4
|
adantr |
|
23 |
|
simpr |
|
24 |
22 23
|
elrpd |
|
25 |
6
|
adantr |
|
26 |
7
|
adantr |
|
27 |
8
|
adantr |
|
28 |
9
|
adantlr |
|
29 |
10
|
adantlr |
|
30 |
11
|
adantlr |
|
31 |
12
|
adantlr |
|
32 |
20 21 3 24 5 25 26 27 28 29 30 31
|
fourierdlem108 |
|
33 |
|
oveq2 |
|
34 |
1
|
recnd |
|
35 |
34
|
subid1d |
|
36 |
33 35
|
sylan9eqr |
|
37 |
|
oveq2 |
|
38 |
2
|
recnd |
|
39 |
38
|
subid1d |
|
40 |
37 39
|
sylan9eqr |
|
41 |
36 40
|
oveq12d |
|
42 |
41
|
itgeq1d |
|
43 |
42
|
adantlr |
|
44 |
|
simpll |
|
45 |
44 4
|
syl |
|
46 |
|
0red |
|
47 |
|
simpr |
|
48 |
47
|
neqned |
|
49 |
|
simplr |
|
50 |
45 46 48 49
|
lttri5d |
|
51 |
4
|
recnd |
|
52 |
34 51
|
subcld |
|
53 |
52 51
|
subnegd |
|
54 |
34 51
|
npcand |
|
55 |
53 54
|
eqtrd |
|
56 |
38 51
|
subcld |
|
57 |
56 51
|
subnegd |
|
58 |
38 51
|
npcand |
|
59 |
57 58
|
eqtrd |
|
60 |
55 59
|
oveq12d |
|
61 |
60
|
eqcomd |
|
62 |
61
|
itgeq1d |
|
63 |
62
|
adantr |
|
64 |
1 4
|
resubcld |
|
65 |
64
|
adantr |
|
66 |
2 4
|
resubcld |
|
67 |
66
|
adantr |
|
68 |
|
eqid |
|
69 |
4
|
renegcld |
|
70 |
69
|
adantr |
|
71 |
4
|
lt0neg1d |
|
72 |
71
|
biimpa |
|
73 |
70 72
|
elrpd |
|
74 |
|
fveq2 |
|
75 |
|
oveq1 |
|
76 |
75
|
fveq2d |
|
77 |
74 76
|
breq12d |
|
78 |
77
|
cbvralvw |
|
79 |
78
|
anbi2i |
|
80 |
79
|
a1i |
|
81 |
80
|
rabbiia |
|
82 |
81
|
mpteq2i |
|
83 |
13 82
|
eqtri |
|
84 |
5 6 7
|
fourierdlem11 |
|
85 |
84
|
simp3d |
|
86 |
1 2 4 85
|
ltsub1dd |
|
87 |
3 5 6 7 64 66 86 13 14 15 16
|
fourierdlem54 |
|
88 |
87
|
simpld |
|
89 |
88
|
simpld |
|
90 |
89
|
adantr |
|
91 |
88
|
simprd |
|
92 |
91
|
adantr |
|
93 |
8
|
adantr |
|
94 |
38 34 51
|
nnncan2d |
|
95 |
94 3
|
eqtr4di |
|
96 |
95
|
oveq2d |
|
97 |
96
|
adantr |
|
98 |
97
|
fveq2d |
|
99 |
98 9
|
eqtrd |
|
100 |
99
|
adantlr |
|
101 |
6
|
adantr |
|
102 |
7
|
adantr |
|
103 |
8
|
adantr |
|
104 |
9
|
adantlr |
|
105 |
10
|
adantlr |
|
106 |
64
|
adantr |
|
107 |
64
|
rexrd |
|
108 |
|
pnfxr |
|
109 |
108
|
a1i |
|
110 |
66
|
ltpnfd |
|
111 |
107 109 66 86 110
|
eliood |
|
112 |
111
|
adantr |
|
113 |
|
oveq1 |
|
114 |
113
|
eleq1d |
|
115 |
114
|
rexbidv |
|
116 |
115
|
cbvrabv |
|
117 |
116
|
uneq2i |
|
118 |
14 117
|
eqtri |
|
119 |
|
simpr |
|
120 |
|
eqid |
|
121 |
|
eqid |
|
122 |
|
eqid |
|
123 |
|
fveq2 |
|
124 |
123
|
breq1d |
|
125 |
124
|
cbvrabv |
|
126 |
125
|
supeq1i |
|
127 |
126
|
mpteq2i |
|
128 |
19 127
|
eqtri |
|
129 |
5 3 101 102 103 104 105 106 112 13 118 15 16 17 18 119 120 121 122 128
|
fourierdlem90 |
|
130 |
129
|
adantlr |
|
131 |
11
|
adantlr |
|
132 |
|
eqid |
|
133 |
5 3 101 102 103 104 105 131 106 112 13 118 15 16 17 18 119 120 128 132
|
fourierdlem89 |
|
134 |
133
|
adantlr |
|
135 |
12
|
adantlr |
|
136 |
|
eqid |
|
137 |
5 3 101 102 103 104 105 135 106 112 13 118 15 16 17 18 119 120 128 136
|
fourierdlem91 |
|
138 |
137
|
adantlr |
|
139 |
65 67 68 73 83 90 92 93 100 130 134 138
|
fourierdlem108 |
|
140 |
63 139
|
eqtr2d |
|
141 |
44 50 140
|
syl2anc |
|
142 |
43 141
|
pm2.61dan |
|
143 |
32 142
|
pm2.61dan |
|