Metamath Proof Explorer


Theorem fourierdlem11

Description: If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem11.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem11.m φ M
fourierdlem11.q φ Q P M
Assertion fourierdlem11 φ A B A < B

Proof

Step Hyp Ref Expression
1 fourierdlem11.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
2 fourierdlem11.m φ M
3 fourierdlem11.q φ Q P M
4 1 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
5 2 4 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
6 3 5 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
7 6 simprd φ Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
8 7 simpld φ Q 0 = A Q M = B
9 8 simpld φ Q 0 = A
10 6 simpld φ Q 0 M
11 elmapi Q 0 M Q : 0 M
12 10 11 syl φ Q : 0 M
13 0zd φ 0
14 2 nnzd φ M
15 0red φ 0
16 15 leidd φ 0 0
17 2 nnred φ M
18 2 nngt0d φ 0 < M
19 15 17 18 ltled φ 0 M
20 13 14 13 16 19 elfzd φ 0 0 M
21 12 20 ffvelrnd φ Q 0
22 9 21 eqeltrrd φ A
23 8 simprd φ Q M = B
24 17 leidd φ M M
25 13 14 14 19 24 elfzd φ M 0 M
26 12 25 ffvelrnd φ Q M
27 23 26 eqeltrrd φ B
28 1zzd φ 1
29 0le1 0 1
30 29 a1i φ 0 1
31 2 nnge1d φ 1 M
32 13 14 28 30 31 elfzd φ 1 0 M
33 12 32 ffvelrnd φ Q 1
34 elfzo 0 0 M 0 0 ..^ M 0 0 0 < M
35 13 13 14 34 syl3anc φ 0 0 ..^ M 0 0 0 < M
36 16 18 35 mpbir2and φ 0 0 ..^ M
37 0re 0
38 eleq1 i = 0 i 0 ..^ M 0 0 ..^ M
39 38 anbi2d i = 0 φ i 0 ..^ M φ 0 0 ..^ M
40 fveq2 i = 0 Q i = Q 0
41 oveq1 i = 0 i + 1 = 0 + 1
42 41 fveq2d i = 0 Q i + 1 = Q 0 + 1
43 40 42 breq12d i = 0 Q i < Q i + 1 Q 0 < Q 0 + 1
44 39 43 imbi12d i = 0 φ i 0 ..^ M Q i < Q i + 1 φ 0 0 ..^ M Q 0 < Q 0 + 1
45 7 simprd φ i 0 ..^ M Q i < Q i + 1
46 45 r19.21bi φ i 0 ..^ M Q i < Q i + 1
47 44 46 vtoclg 0 φ 0 0 ..^ M Q 0 < Q 0 + 1
48 37 47 ax-mp φ 0 0 ..^ M Q 0 < Q 0 + 1
49 36 48 mpdan φ Q 0 < Q 0 + 1
50 0p1e1 0 + 1 = 1
51 50 a1i φ 0 + 1 = 1
52 51 fveq2d φ Q 0 + 1 = Q 1
53 49 9 52 3brtr3d φ A < Q 1
54 nnuz = 1
55 2 54 eleqtrdi φ M 1
56 12 adantr φ i 1 M Q : 0 M
57 0zd i 1 M 0
58 elfzel2 i 1 M M
59 elfzelz i 1 M i
60 0red i 1 M 0
61 59 zred i 1 M i
62 1red i 1 M 1
63 0lt1 0 < 1
64 63 a1i i 1 M 0 < 1
65 elfzle1 i 1 M 1 i
66 60 62 61 64 65 ltletrd i 1 M 0 < i
67 60 61 66 ltled i 1 M 0 i
68 elfzle2 i 1 M i M
69 57 58 59 67 68 elfzd i 1 M i 0 M
70 69 adantl φ i 1 M i 0 M
71 56 70 ffvelrnd φ i 1 M Q i
72 12 adantr φ i 1 M 1 Q : 0 M
73 0zd φ i 1 M 1 0
74 14 adantr φ i 1 M 1 M
75 elfzelz i 1 M 1 i
76 75 adantl φ i 1 M 1 i
77 0red i 1 M 1 0
78 75 zred i 1 M 1 i
79 1red i 1 M 1 1
80 63 a1i i 1 M 1 0 < 1
81 elfzle1 i 1 M 1 1 i
82 77 79 78 80 81 ltletrd i 1 M 1 0 < i
83 77 78 82 ltled i 1 M 1 0 i
84 83 adantl φ i 1 M 1 0 i
85 78 adantl φ i 1 M 1 i
86 17 adantr φ i 1 M 1 M
87 peano2rem M M 1
88 86 87 syl φ i 1 M 1 M 1
89 elfzle2 i 1 M 1 i M 1
90 89 adantl φ i 1 M 1 i M 1
91 86 ltm1d φ i 1 M 1 M 1 < M
92 85 88 86 90 91 lelttrd φ i 1 M 1 i < M
93 85 86 92 ltled φ i 1 M 1 i M
94 73 74 76 84 93 elfzd φ i 1 M 1 i 0 M
95 72 94 ffvelrnd φ i 1 M 1 Q i
96 76 peano2zd φ i 1 M 1 i + 1
97 0red φ i 1 M 1 0
98 peano2re i i + 1
99 85 98 syl φ i 1 M 1 i + 1
100 1red φ i 1 M 1 1
101 63 a1i φ i 1 M 1 0 < 1
102 78 98 syl i 1 M 1 i + 1
103 78 ltp1d i 1 M 1 i < i + 1
104 79 78 102 81 103 lelttrd i 1 M 1 1 < i + 1
105 104 adantl φ i 1 M 1 1 < i + 1
106 97 100 99 101 105 lttrd φ i 1 M 1 0 < i + 1
107 97 99 106 ltled φ i 1 M 1 0 i + 1
108 85 88 100 90 leadd1dd φ i 1 M 1 i + 1 M - 1 + 1
109 2 nncnd φ M
110 1cnd φ 1
111 109 110 npcand φ M - 1 + 1 = M
112 111 adantr φ i 1 M 1 M - 1 + 1 = M
113 108 112 breqtrd φ i 1 M 1 i + 1 M
114 73 74 96 107 113 elfzd φ i 1 M 1 i + 1 0 M
115 72 114 ffvelrnd φ i 1 M 1 Q i + 1
116 elfzo i 0 M i 0 ..^ M 0 i i < M
117 76 73 74 116 syl3anc φ i 1 M 1 i 0 ..^ M 0 i i < M
118 84 92 117 mpbir2and φ i 1 M 1 i 0 ..^ M
119 118 46 syldan φ i 1 M 1 Q i < Q i + 1
120 95 115 119 ltled φ i 1 M 1 Q i Q i + 1
121 55 71 120 monoord φ Q 1 Q M
122 121 23 breqtrd φ Q 1 B
123 22 33 27 53 122 ltletrd φ A < B
124 22 27 123 3jca φ A B A < B