Metamath Proof Explorer


Theorem fourierdlem11

Description: If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem11.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem11.m φ M
fourierdlem11.q φ Q P M
Assertion fourierdlem11 φ A B A < B

Proof

Step Hyp Ref Expression
1 fourierdlem11.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
2 fourierdlem11.m φ M
3 fourierdlem11.q φ Q P M
4 1 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
5 2 4 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
6 3 5 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
7 6 simprd φ Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
8 7 simpld φ Q 0 = A Q M = B
9 8 simpld φ Q 0 = A
10 6 simpld φ Q 0 M
11 elmapi Q 0 M Q : 0 M
12 10 11 syl φ Q : 0 M
13 0red φ 0
14 13 leidd φ 0 0
15 2 nnred φ M
16 2 nngt0d φ 0 < M
17 13 15 16 ltled φ 0 M
18 0zd φ 0
19 2 nnzd φ M
20 elfz 0 0 M 0 0 M 0 0 0 M
21 18 18 19 20 syl3anc φ 0 0 M 0 0 0 M
22 14 17 21 mpbir2and φ 0 0 M
23 12 22 ffvelrnd φ Q 0
24 9 23 eqeltrrd φ A
25 8 simprd φ Q M = B
26 15 leidd φ M M
27 elfz M 0 M M 0 M 0 M M M
28 19 18 19 27 syl3anc φ M 0 M 0 M M M
29 17 26 28 mpbir2and φ M 0 M
30 12 29 ffvelrnd φ Q M
31 25 30 eqeltrrd φ B
32 0le1 0 1
33 32 a1i φ 0 1
34 2 nnge1d φ 1 M
35 1zzd φ 1
36 elfz 1 0 M 1 0 M 0 1 1 M
37 35 18 19 36 syl3anc φ 1 0 M 0 1 1 M
38 33 34 37 mpbir2and φ 1 0 M
39 12 38 ffvelrnd φ Q 1
40 elfzo 0 0 M 0 0 ..^ M 0 0 0 < M
41 18 18 19 40 syl3anc φ 0 0 ..^ M 0 0 0 < M
42 14 16 41 mpbir2and φ 0 0 ..^ M
43 0re 0
44 eleq1 i = 0 i 0 ..^ M 0 0 ..^ M
45 44 anbi2d i = 0 φ i 0 ..^ M φ 0 0 ..^ M
46 fveq2 i = 0 Q i = Q 0
47 oveq1 i = 0 i + 1 = 0 + 1
48 47 fveq2d i = 0 Q i + 1 = Q 0 + 1
49 46 48 breq12d i = 0 Q i < Q i + 1 Q 0 < Q 0 + 1
50 45 49 imbi12d i = 0 φ i 0 ..^ M Q i < Q i + 1 φ 0 0 ..^ M Q 0 < Q 0 + 1
51 7 simprd φ i 0 ..^ M Q i < Q i + 1
52 51 r19.21bi φ i 0 ..^ M Q i < Q i + 1
53 50 52 vtoclg 0 φ 0 0 ..^ M Q 0 < Q 0 + 1
54 43 53 ax-mp φ 0 0 ..^ M Q 0 < Q 0 + 1
55 42 54 mpdan φ Q 0 < Q 0 + 1
56 0p1e1 0 + 1 = 1
57 56 a1i φ 0 + 1 = 1
58 57 fveq2d φ Q 0 + 1 = Q 1
59 55 9 58 3brtr3d φ A < Q 1
60 nnuz = 1
61 2 60 eleqtrdi φ M 1
62 12 adantr φ i 1 M Q : 0 M
63 0red i 1 M 0
64 elfzelz i 1 M i
65 64 zred i 1 M i
66 1red i 1 M 1
67 0lt1 0 < 1
68 67 a1i i 1 M 0 < 1
69 elfzle1 i 1 M 1 i
70 63 66 65 68 69 ltletrd i 1 M 0 < i
71 63 65 70 ltled i 1 M 0 i
72 elfzle2 i 1 M i M
73 0zd i 1 M 0
74 elfzel2 i 1 M M
75 elfz i 0 M i 0 M 0 i i M
76 64 73 74 75 syl3anc i 1 M i 0 M 0 i i M
77 71 72 76 mpbir2and i 1 M i 0 M
78 77 adantl φ i 1 M i 0 M
79 62 78 ffvelrnd φ i 1 M Q i
80 12 adantr φ i 1 M 1 Q : 0 M
81 0red i 1 M 1 0
82 elfzelz i 1 M 1 i
83 82 zred i 1 M 1 i
84 1red i 1 M 1 1
85 67 a1i i 1 M 1 0 < 1
86 elfzle1 i 1 M 1 1 i
87 81 84 83 85 86 ltletrd i 1 M 1 0 < i
88 81 83 87 ltled i 1 M 1 0 i
89 88 adantl φ i 1 M 1 0 i
90 83 adantl φ i 1 M 1 i
91 15 adantr φ i 1 M 1 M
92 peano2rem M M 1
93 91 92 syl φ i 1 M 1 M 1
94 elfzle2 i 1 M 1 i M 1
95 94 adantl φ i 1 M 1 i M 1
96 91 ltm1d φ i 1 M 1 M 1 < M
97 90 93 91 95 96 lelttrd φ i 1 M 1 i < M
98 90 91 97 ltled φ i 1 M 1 i M
99 82 adantl φ i 1 M 1 i
100 0zd φ i 1 M 1 0
101 19 adantr φ i 1 M 1 M
102 99 100 101 75 syl3anc φ i 1 M 1 i 0 M 0 i i M
103 89 98 102 mpbir2and φ i 1 M 1 i 0 M
104 80 103 ffvelrnd φ i 1 M 1 Q i
105 0red φ i 1 M 1 0
106 peano2re i i + 1
107 90 106 syl φ i 1 M 1 i + 1
108 1red φ i 1 M 1 1
109 67 a1i φ i 1 M 1 0 < 1
110 83 106 syl i 1 M 1 i + 1
111 83 ltp1d i 1 M 1 i < i + 1
112 84 83 110 86 111 lelttrd i 1 M 1 1 < i + 1
113 112 adantl φ i 1 M 1 1 < i + 1
114 105 108 107 109 113 lttrd φ i 1 M 1 0 < i + 1
115 105 107 114 ltled φ i 1 M 1 0 i + 1
116 90 93 108 95 leadd1dd φ i 1 M 1 i + 1 M - 1 + 1
117 2 nncnd φ M
118 1cnd φ 1
119 117 118 npcand φ M - 1 + 1 = M
120 119 adantr φ i 1 M 1 M - 1 + 1 = M
121 116 120 breqtrd φ i 1 M 1 i + 1 M
122 99 peano2zd φ i 1 M 1 i + 1
123 elfz i + 1 0 M i + 1 0 M 0 i + 1 i + 1 M
124 122 100 101 123 syl3anc φ i 1 M 1 i + 1 0 M 0 i + 1 i + 1 M
125 115 121 124 mpbir2and φ i 1 M 1 i + 1 0 M
126 80 125 ffvelrnd φ i 1 M 1 Q i + 1
127 elfzo i 0 M i 0 ..^ M 0 i i < M
128 99 100 101 127 syl3anc φ i 1 M 1 i 0 ..^ M 0 i i < M
129 89 97 128 mpbir2and φ i 1 M 1 i 0 ..^ M
130 129 52 syldan φ i 1 M 1 Q i < Q i + 1
131 104 126 130 ltled φ i 1 M 1 Q i Q i + 1
132 61 79 131 monoord φ Q 1 Q M
133 132 25 breqtrd φ Q 1 B
134 24 39 31 59 133 ltletrd φ A < B
135 24 31 134 3jca φ A B A < B