Metamath Proof Explorer


Theorem fourierdlem114

Description: Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem114.f φ F :
fourierdlem114.t T = 2 π
fourierdlem114.per φ x F x + T = F x
fourierdlem114.g G = F π π
fourierdlem114.dmdv φ π π dom G Fin
fourierdlem114.gcn φ G : dom G cn
fourierdlem114.rlim φ x π π dom G G x +∞ lim x
fourierdlem114.llim φ x π π dom G G −∞ x lim x
fourierdlem114.x φ X
fourierdlem114.l φ L F −∞ X lim X
fourierdlem114.r φ R F X +∞ lim X
fourierdlem114.a A = n 0 π π F x cos n x dx π
fourierdlem114.b B = n π π F x sin n x dx π
fourierdlem114.s S = n A n cos n X + B n sin n X
fourierdlem114.p P = n p 0 n | p 0 = π p n = π i 0 ..^ n p i < p i + 1
fourierdlem114.e E = x x + π x T T
fourierdlem114.h H = π π E X π π dom G
fourierdlem114.m M = H 1
fourierdlem114.q Q = ι g | g Isom < , < 0 M H
Assertion fourierdlem114 φ seq 1 + S L + R 2 A 0 2 A 0 2 + n A n cos n X + B n sin n X = L + R 2

Proof

Step Hyp Ref Expression
1 fourierdlem114.f φ F :
2 fourierdlem114.t T = 2 π
3 fourierdlem114.per φ x F x + T = F x
4 fourierdlem114.g G = F π π
5 fourierdlem114.dmdv φ π π dom G Fin
6 fourierdlem114.gcn φ G : dom G cn
7 fourierdlem114.rlim φ x π π dom G G x +∞ lim x
8 fourierdlem114.llim φ x π π dom G G −∞ x lim x
9 fourierdlem114.x φ X
10 fourierdlem114.l φ L F −∞ X lim X
11 fourierdlem114.r φ R F X +∞ lim X
12 fourierdlem114.a A = n 0 π π F x cos n x dx π
13 fourierdlem114.b B = n π π F x sin n x dx π
14 fourierdlem114.s S = n A n cos n X + B n sin n X
15 fourierdlem114.p P = n p 0 n | p 0 = π p n = π i 0 ..^ n p i < p i + 1
16 fourierdlem114.e E = x x + π x T T
17 fourierdlem114.h H = π π E X π π dom G
18 fourierdlem114.m M = H 1
19 fourierdlem114.q Q = ι g | g Isom < , < 0 M H
20 2z 2
21 20 a1i φ 2
22 tpfi π π E X Fin
23 22 a1i φ π π E X Fin
24 pire π
25 24 renegcli π
26 25 rexri π *
27 24 rexri π *
28 negpilt0 π < 0
29 pipos 0 < π
30 0re 0
31 25 30 24 lttri π < 0 0 < π π < π
32 28 29 31 mp2an π < π
33 25 24 32 ltleii π π
34 prunioo π * π * π π π π π π = π π
35 26 27 33 34 mp3an π π π π = π π
36 35 difeq1i π π π π dom G = π π dom G
37 difundir π π π π dom G = π π dom G π π dom G
38 36 37 eqtr3i π π dom G = π π dom G π π dom G
39 prfi π π Fin
40 diffi π π Fin π π dom G Fin
41 39 40 mp1i φ π π dom G Fin
42 unfi π π dom G Fin π π dom G Fin π π dom G π π dom G Fin
43 5 41 42 syl2anc φ π π dom G π π dom G Fin
44 38 43 eqeltrid φ π π dom G Fin
45 unfi π π E X Fin π π dom G Fin π π E X π π dom G Fin
46 23 44 45 syl2anc φ π π E X π π dom G Fin
47 17 46 eqeltrid φ H Fin
48 hashcl H Fin H 0
49 47 48 syl φ H 0
50 49 nn0zd φ H
51 25 32 ltneii π π
52 hashprg π π π π π π = 2
53 25 24 52 mp2an π π π π = 2
54 51 53 mpbi π π = 2
55 22 elexi π π E X V
56 ovex π π V
57 difexg π π V π π dom G V
58 56 57 ax-mp π π dom G V
59 55 58 unex π π E X π π dom G V
60 17 59 eqeltri H V
61 negex π V
62 61 tpid1 π π π E X
63 24 elexi π V
64 63 tpid2 π π π E X
65 prssi π π π E X π π π E X π π π π E X
66 62 64 65 mp2an π π π π E X
67 ssun1 π π E X π π E X π π dom G
68 67 17 sseqtrri π π E X H
69 66 68 sstri π π H
70 hashss H V π π H π π H
71 60 69 70 mp2an π π H
72 71 a1i φ π π H
73 54 72 eqbrtrrid φ 2 H
74 eluz2 H 2 2 H 2 H
75 21 50 73 74 syl3anbrc φ H 2
76 uz2m1nn H 2 H 1
77 75 76 syl φ H 1
78 18 77 eqeltrid φ M
79 25 a1i φ π
80 24 a1i φ π
81 negpitopissre π π
82 32 a1i φ π < π
83 picn π
84 83 2timesi 2 π = π + π
85 83 83 subnegi π π = π + π
86 84 2 85 3eqtr4i T = π π
87 79 80 82 86 16 fourierdlem4 φ E : π π
88 87 9 ffvelrnd φ E X π π
89 81 88 sselid φ E X
90 79 80 89 3jca φ π π E X
91 fvex E X V
92 61 63 91 tpss π π E X π π E X
93 90 92 sylib φ π π E X
94 iccssre π π π π
95 25 24 94 mp2an π π
96 ssdifss π π π π dom G
97 95 96 mp1i φ π π dom G
98 93 97 unssd φ π π E X π π dom G
99 17 98 eqsstrid φ H
100 47 99 19 18 fourierdlem36 φ Q Isom < , < 0 M H
101 isof1o Q Isom < , < 0 M H Q : 0 M 1-1 onto H
102 f1of Q : 0 M 1-1 onto H Q : 0 M H
103 100 101 102 3syl φ Q : 0 M H
104 103 99 fssd φ Q : 0 M
105 reex V
106 ovex 0 M V
107 105 106 elmap Q 0 M Q : 0 M
108 104 107 sylibr φ Q 0 M
109 fveq2 0 = i Q 0 = Q i
110 109 adantl φ i 0 M 0 = i Q 0 = Q i
111 104 ffvelrnda φ i 0 M Q i
112 111 leidd φ i 0 M Q i Q i
113 112 adantr φ i 0 M 0 = i Q i Q i
114 110 113 eqbrtrd φ i 0 M 0 = i Q 0 Q i
115 elfzelz i 0 M i
116 115 zred i 0 M i
117 116 ad2antlr φ i 0 M ¬ 0 = i i
118 elfzle1 i 0 M 0 i
119 118 ad2antlr φ i 0 M ¬ 0 = i 0 i
120 neqne ¬ 0 = i 0 i
121 120 necomd ¬ 0 = i i 0
122 121 adantl φ i 0 M ¬ 0 = i i 0
123 117 119 122 ne0gt0d φ i 0 M ¬ 0 = i 0 < i
124 nnssnn0 0
125 nn0uz 0 = 0
126 124 125 sseqtri 0
127 126 78 sselid φ M 0
128 eluzfz1 M 0 0 0 M
129 127 128 syl φ 0 0 M
130 103 129 ffvelrnd φ Q 0 H
131 99 130 sseldd φ Q 0
132 131 ad2antrr φ i 0 M 0 < i Q 0
133 111 adantr φ i 0 M 0 < i Q i
134 simpr φ i 0 M 0 < i 0 < i
135 100 ad2antrr φ i 0 M 0 < i Q Isom < , < 0 M H
136 129 anim1i φ i 0 M 0 0 M i 0 M
137 136 adantr φ i 0 M 0 < i 0 0 M i 0 M
138 isorel Q Isom < , < 0 M H 0 0 M i 0 M 0 < i Q 0 < Q i
139 135 137 138 syl2anc φ i 0 M 0 < i 0 < i Q 0 < Q i
140 134 139 mpbid φ i 0 M 0 < i Q 0 < Q i
141 132 133 140 ltled φ i 0 M 0 < i Q 0 Q i
142 123 141 syldan φ i 0 M ¬ 0 = i Q 0 Q i
143 114 142 pm2.61dan φ i 0 M Q 0 Q i
144 143 adantr φ i 0 M Q i = π Q 0 Q i
145 simpr φ i 0 M Q i = π Q i = π
146 144 145 breqtrd φ i 0 M Q i = π Q 0 π
147 79 rexrd φ π *
148 80 rexrd φ π *
149 lbicc2 π * π * π π π π π
150 26 27 33 149 mp3an π π π
151 150 a1i φ π π π
152 ubicc2 π * π * π π π π π
153 26 27 33 152 mp3an π π π
154 153 a1i φ π π π
155 iocssicc π π π π
156 155 88 sselid φ E X π π
157 tpssi π π π π π π E X π π π π E X π π
158 151 154 156 157 syl3anc φ π π E X π π
159 difssd φ π π dom G π π
160 158 159 unssd φ π π E X π π dom G π π
161 17 160 eqsstrid φ H π π
162 161 130 sseldd φ Q 0 π π
163 iccgelb π * π * Q 0 π π π Q 0
164 147 148 162 163 syl3anc φ π Q 0
165 164 ad2antrr φ i 0 M Q i = π π Q 0
166 131 ad2antrr φ i 0 M Q i = π Q 0
167 25 a1i φ i 0 M Q i = π π
168 166 167 letri3d φ i 0 M Q i = π Q 0 = π Q 0 π π Q 0
169 146 165 168 mpbir2and φ i 0 M Q i = π Q 0 = π
170 68 62 sselii π H
171 f1ofo Q : 0 M 1-1 onto H Q : 0 M onto H
172 101 171 syl Q Isom < , < 0 M H Q : 0 M onto H
173 forn Q : 0 M onto H ran Q = H
174 100 172 173 3syl φ ran Q = H
175 170 174 eleqtrrid φ π ran Q
176 ffn Q : 0 M H Q Fn 0 M
177 fvelrnb Q Fn 0 M π ran Q i 0 M Q i = π
178 103 176 177 3syl φ π ran Q i 0 M Q i = π
179 175 178 mpbid φ i 0 M Q i = π
180 169 179 r19.29a φ Q 0 = π
181 68 64 sselii π H
182 181 174 eleqtrrid φ π ran Q
183 fvelrnb Q Fn 0 M π ran Q i 0 M Q i = π
184 103 176 183 3syl φ π ran Q i 0 M Q i = π
185 182 184 mpbid φ i 0 M Q i = π
186 103 161 fssd φ Q : 0 M π π
187 eluzfz2 M 0 M 0 M
188 127 187 syl φ M 0 M
189 186 188 ffvelrnd φ Q M π π
190 iccleub π * π * Q M π π Q M π
191 147 148 189 190 syl3anc φ Q M π
192 191 3ad2ant1 φ i 0 M Q i = π Q M π
193 id Q i = π Q i = π
194 193 eqcomd Q i = π π = Q i
195 194 3ad2ant3 φ i 0 M Q i = π π = Q i
196 112 adantr φ i 0 M i = M Q i Q i
197 fveq2 i = M Q i = Q M
198 197 adantl φ i 0 M i = M Q i = Q M
199 196 198 breqtrd φ i 0 M i = M Q i Q M
200 116 ad2antlr φ i 0 M ¬ i = M i
201 elfzel2 i 0 M M
202 201 zred i 0 M M
203 202 ad2antlr φ i 0 M ¬ i = M M
204 elfzle2 i 0 M i M
205 204 ad2antlr φ i 0 M ¬ i = M i M
206 neqne ¬ i = M i M
207 206 necomd ¬ i = M M i
208 207 adantl φ i 0 M ¬ i = M M i
209 200 203 205 208 leneltd φ i 0 M ¬ i = M i < M
210 111 adantr φ i 0 M i < M Q i
211 95 189 sselid φ Q M
212 211 ad2antrr φ i 0 M i < M Q M
213 simpr φ i 0 M i < M i < M
214 100 ad2antrr φ i 0 M i < M Q Isom < , < 0 M H
215 simpr φ i 0 M i 0 M
216 188 adantr φ i 0 M M 0 M
217 215 216 jca φ i 0 M i 0 M M 0 M
218 217 adantr φ i 0 M i < M i 0 M M 0 M
219 isorel Q Isom < , < 0 M H i 0 M M 0 M i < M Q i < Q M
220 214 218 219 syl2anc φ i 0 M i < M i < M Q i < Q M
221 213 220 mpbid φ i 0 M i < M Q i < Q M
222 210 212 221 ltled φ i 0 M i < M Q i Q M
223 209 222 syldan φ i 0 M ¬ i = M Q i Q M
224 199 223 pm2.61dan φ i 0 M Q i Q M
225 224 3adant3 φ i 0 M Q i = π Q i Q M
226 195 225 eqbrtrd φ i 0 M Q i = π π Q M
227 211 3ad2ant1 φ i 0 M Q i = π Q M
228 24 a1i φ i 0 M Q i = π π
229 227 228 letri3d φ i 0 M Q i = π Q M = π Q M π π Q M
230 192 226 229 mpbir2and φ i 0 M Q i = π Q M = π
231 230 rexlimdv3a φ i 0 M Q i = π Q M = π
232 185 231 mpd φ Q M = π
233 elfzoelz i 0 ..^ M i
234 233 zred i 0 ..^ M i
235 234 ltp1d i 0 ..^ M i < i + 1
236 235 adantl φ i 0 ..^ M i < i + 1
237 elfzofz i 0 ..^ M i 0 M
238 fzofzp1 i 0 ..^ M i + 1 0 M
239 237 238 jca i 0 ..^ M i 0 M i + 1 0 M
240 isorel Q Isom < , < 0 M H i 0 M i + 1 0 M i < i + 1 Q i < Q i + 1
241 100 239 240 syl2an φ i 0 ..^ M i < i + 1 Q i < Q i + 1
242 236 241 mpbid φ i 0 ..^ M Q i < Q i + 1
243 242 ralrimiva φ i 0 ..^ M Q i < Q i + 1
244 180 232 243 jca31 φ Q 0 = π Q M = π i 0 ..^ M Q i < Q i + 1
245 15 fourierdlem2 M Q P M Q 0 M Q 0 = π Q M = π i 0 ..^ M Q i < Q i + 1
246 78 245 syl φ Q P M Q 0 M Q 0 = π Q M = π i 0 ..^ M Q i < Q i + 1
247 108 244 246 mpbir2and φ Q P M
248 4 reseq1i G Q i Q i + 1 = F π π Q i Q i + 1
249 26 a1i φ i 0 ..^ M π *
250 27 a1i φ i 0 ..^ M π *
251 186 adantr φ i 0 ..^ M Q : 0 M π π
252 simpr φ i 0 ..^ M i 0 ..^ M
253 249 250 251 252 fourierdlem27 φ i 0 ..^ M Q i Q i + 1 π π
254 253 resabs1d φ i 0 ..^ M F π π Q i Q i + 1 = F Q i Q i + 1
255 248 254 eqtr2id φ i 0 ..^ M F Q i Q i + 1 = G Q i Q i + 1
256 6 15 78 247 17 174 fourierdlem38 φ i 0 ..^ M G Q i Q i + 1 : Q i Q i + 1 cn
257 255 256 eqeltrd φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
258 255 oveq1d φ i 0 ..^ M F Q i Q i + 1 lim Q i = G Q i Q i + 1 lim Q i
259 6 adantr φ i 0 ..^ M G : dom G cn
260 7 adantlr φ i 0 ..^ M x π π dom G G x +∞ lim x
261 8 adantlr φ i 0 ..^ M x π π dom G G −∞ x lim x
262 100 adantr φ i 0 ..^ M Q Isom < , < 0 M H
263 262 101 102 3syl φ i 0 ..^ M Q : 0 M H
264 89 adantr φ i 0 ..^ M E X
265 262 172 173 3syl φ i 0 ..^ M ran Q = H
266 259 260 261 262 263 252 242 253 264 17 265 fourierdlem46 φ i 0 ..^ M G Q i Q i + 1 lim Q i G Q i Q i + 1 lim Q i + 1
267 266 simpld φ i 0 ..^ M G Q i Q i + 1 lim Q i
268 258 267 eqnetrd φ i 0 ..^ M F Q i Q i + 1 lim Q i
269 255 oveq1d φ i 0 ..^ M F Q i Q i + 1 lim Q i + 1 = G Q i Q i + 1 lim Q i + 1
270 266 simprd φ i 0 ..^ M G Q i Q i + 1 lim Q i + 1
271 269 270 eqnetrd φ i 0 ..^ M F Q i Q i + 1 lim Q i + 1
272 91 tpid3 E X π π E X
273 elun1 E X π π E X E X π π E X π π dom G
274 272 273 mp1i φ E X π π E X π π dom G
275 274 17 eleqtrrdi φ E X H
276 275 174 eleqtrrd φ E X ran Q
277 1 2 3 9 10 11 15 78 247 257 268 271 12 13 14 16 276 fourierdlem113 φ seq 1 + S L + R 2 A 0 2 A 0 2 + n A n cos n X + B n sin n X = L + R 2