Metamath Proof Explorer


Theorem fourierdlem115

Description: Fourier serier convergence, for piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem115.f φ F :
fourierdlem115.t T = 2 π
fourierdlem115.per φ x F x + T = F x
fourierdlem115.g G = F π π
fourierdlem115.dmdv φ π π dom G Fin
fourierdlem115.dvcn φ G : dom G cn
fourierdlem115.rlim φ x π π dom G G x +∞ lim x
fourierdlem115.llim φ x π π dom G G −∞ x lim x
fourierdlem115.x φ X
fourierdlem115.l φ L F −∞ X lim X
fourierdlem115.r φ R F X +∞ lim X
fourierdlem115.a A = n 0 π π F x cos n x dx π
fourierdlem115.b B = n π π F x sin n x dx π
fourierdlem115.s S = k A k cos k X + B k sin k X
Assertion fourierdlem115 φ seq 1 + S L + R 2 A 0 2 A 0 2 + n A n cos n X + B n sin n X = L + R 2

Proof

Step Hyp Ref Expression
1 fourierdlem115.f φ F :
2 fourierdlem115.t T = 2 π
3 fourierdlem115.per φ x F x + T = F x
4 fourierdlem115.g G = F π π
5 fourierdlem115.dmdv φ π π dom G Fin
6 fourierdlem115.dvcn φ G : dom G cn
7 fourierdlem115.rlim φ x π π dom G G x +∞ lim x
8 fourierdlem115.llim φ x π π dom G G −∞ x lim x
9 fourierdlem115.x φ X
10 fourierdlem115.l φ L F −∞ X lim X
11 fourierdlem115.r φ R F X +∞ lim X
12 fourierdlem115.a A = n 0 π π F x cos n x dx π
13 fourierdlem115.b B = n π π F x sin n x dx π
14 fourierdlem115.s S = k A k cos k X + B k sin k X
15 oveq1 n = k n x = k x
16 15 fveq2d n = k cos n x = cos k x
17 16 oveq2d n = k F x cos n x = F x cos k x
18 17 adantr n = k x π π F x cos n x = F x cos k x
19 18 itgeq2dv n = k π π F x cos n x dx = π π F x cos k x dx
20 19 oveq1d n = k π π F x cos n x dx π = π π F x cos k x dx π
21 20 cbvmptv n 0 π π F x cos n x dx π = k 0 π π F x cos k x dx π
22 12 21 eqtri A = k 0 π π F x cos k x dx π
23 15 fveq2d n = k sin n x = sin k x
24 23 oveq2d n = k F x sin n x = F x sin k x
25 24 adantr n = k x π π F x sin n x = F x sin k x
26 25 itgeq2dv n = k π π F x sin n x dx = π π F x sin k x dx
27 26 oveq1d n = k π π F x sin n x dx π = π π F x sin k x dx π
28 27 cbvmptv n π π F x sin n x dx π = k π π F x sin k x dx π
29 13 28 eqtri B = k π π F x sin k x dx π
30 eqid k w 0 k | w 0 = π w k = π z 0 ..^ k w z < w z + 1 = k w 0 k | w 0 = π w k = π z 0 ..^ k w z < w z + 1
31 id y = x y = x
32 oveq2 y = x π y = π x
33 32 oveq1d y = x π y T = π x T
34 33 fveq2d y = x π y T = π x T
35 34 oveq1d y = x π y T T = π x T T
36 31 35 oveq12d y = x y + π y T T = x + π x T T
37 36 cbvmptv y y + π y T T = x x + π x T T
38 eqid π π y y + π y T T X π π dom G = π π y y + π y T T X π π dom G
39 eqid π π y y + π y T T X π π dom G 1 = π π y y + π y T T X π π dom G 1
40 isoeq1 g = f g Isom < , < 0 π π y y + π y T T X π π dom G 1 π π y y + π y T T X π π dom G f Isom < , < 0 π π y y + π y T T X π π dom G 1 π π y y + π y T T X π π dom G
41 40 cbviotavw ι g | g Isom < , < 0 π π y y + π y T T X π π dom G 1 π π y y + π y T T X π π dom G = ι f | f Isom < , < 0 π π y y + π y T T X π π dom G 1 π π y y + π y T T X π π dom G
42 1 2 3 4 5 6 7 8 9 10 11 22 29 14 30 37 38 39 41 fourierdlem114 φ seq 1 + S L + R 2 A 0 2 A 0 2 + k A k cos k X + B k sin k X = L + R 2
43 42 simpld φ seq 1 + S L + R 2 A 0 2
44 nfcv _ k A n cos n X + B n sin n X
45 nfmpt1 _ n n 0 π π F x cos n x dx π
46 12 45 nfcxfr _ n A
47 nfcv _ n k
48 46 47 nffv _ n A k
49 nfcv _ n ×
50 nfcv _ n cos k X
51 48 49 50 nfov _ n A k cos k X
52 nfcv _ n +
53 nfmpt1 _ n n π π F x sin n x dx π
54 13 53 nfcxfr _ n B
55 54 47 nffv _ n B k
56 nfcv _ n sin k X
57 55 49 56 nfov _ n B k sin k X
58 51 52 57 nfov _ n A k cos k X + B k sin k X
59 fveq2 n = k A n = A k
60 oveq1 n = k n X = k X
61 60 fveq2d n = k cos n X = cos k X
62 59 61 oveq12d n = k A n cos n X = A k cos k X
63 fveq2 n = k B n = B k
64 60 fveq2d n = k sin n X = sin k X
65 63 64 oveq12d n = k B n sin n X = B k sin k X
66 62 65 oveq12d n = k A n cos n X + B n sin n X = A k cos k X + B k sin k X
67 44 58 66 cbvsumi n A n cos n X + B n sin n X = k A k cos k X + B k sin k X
68 67 oveq2i A 0 2 + n A n cos n X + B n sin n X = A 0 2 + k A k cos k X + B k sin k X
69 42 simprd φ A 0 2 + k A k cos k X + B k sin k X = L + R 2
70 68 69 eqtrid φ A 0 2 + n A n cos n X + B n sin n X = L + R 2
71 43 70 jca φ seq 1 + S L + R 2 A 0 2 A 0 2 + n A n cos n X + B n sin n X = L + R 2