| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem115.f |
|
| 2 |
|
fourierdlem115.t |
|
| 3 |
|
fourierdlem115.per |
|
| 4 |
|
fourierdlem115.g |
|
| 5 |
|
fourierdlem115.dmdv |
|
| 6 |
|
fourierdlem115.dvcn |
|
| 7 |
|
fourierdlem115.rlim |
|
| 8 |
|
fourierdlem115.llim |
|
| 9 |
|
fourierdlem115.x |
|
| 10 |
|
fourierdlem115.l |
|
| 11 |
|
fourierdlem115.r |
|
| 12 |
|
fourierdlem115.a |
|
| 13 |
|
fourierdlem115.b |
|
| 14 |
|
fourierdlem115.s |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
fveq2d |
|
| 17 |
16
|
oveq2d |
|
| 18 |
17
|
adantr |
|
| 19 |
18
|
itgeq2dv |
|
| 20 |
19
|
oveq1d |
|
| 21 |
20
|
cbvmptv |
|
| 22 |
12 21
|
eqtri |
|
| 23 |
15
|
fveq2d |
|
| 24 |
23
|
oveq2d |
|
| 25 |
24
|
adantr |
|
| 26 |
25
|
itgeq2dv |
|
| 27 |
26
|
oveq1d |
|
| 28 |
27
|
cbvmptv |
|
| 29 |
13 28
|
eqtri |
|
| 30 |
|
eqid |
|
| 31 |
|
id |
|
| 32 |
|
oveq2 |
|
| 33 |
32
|
oveq1d |
|
| 34 |
33
|
fveq2d |
|
| 35 |
34
|
oveq1d |
|
| 36 |
31 35
|
oveq12d |
|
| 37 |
36
|
cbvmptv |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
|
isoeq1 |
|
| 41 |
40
|
cbviotavw |
|
| 42 |
1 2 3 4 5 6 7 8 9 10 11 22 29 14 30 37 38 39 41
|
fourierdlem114 |
|
| 43 |
42
|
simpld |
|
| 44 |
|
fveq2 |
|
| 45 |
|
oveq1 |
|
| 46 |
45
|
fveq2d |
|
| 47 |
44 46
|
oveq12d |
|
| 48 |
|
fveq2 |
|
| 49 |
45
|
fveq2d |
|
| 50 |
48 49
|
oveq12d |
|
| 51 |
47 50
|
oveq12d |
|
| 52 |
|
nfcv |
|
| 53 |
|
nfmpt1 |
|
| 54 |
12 53
|
nfcxfr |
|
| 55 |
|
nfcv |
|
| 56 |
54 55
|
nffv |
|
| 57 |
|
nfcv |
|
| 58 |
|
nfcv |
|
| 59 |
56 57 58
|
nfov |
|
| 60 |
|
nfcv |
|
| 61 |
|
nfmpt1 |
|
| 62 |
13 61
|
nfcxfr |
|
| 63 |
62 55
|
nffv |
|
| 64 |
|
nfcv |
|
| 65 |
63 57 64
|
nfov |
|
| 66 |
59 60 65
|
nfov |
|
| 67 |
51 52 66
|
cbvsum |
|
| 68 |
67
|
oveq2i |
|
| 69 |
42
|
simprd |
|
| 70 |
68 69
|
eqtrid |
|
| 71 |
43 70
|
jca |
|