Metamath Proof Explorer


Theorem fourierdlem12

Description: A point of a partition is not an element of any open interval determined by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem12.1 P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem12.2 φ M
fourierdlem12.3 φ Q P M
fourierdlem12.4 φ X ran Q
Assertion fourierdlem12 φ i 0 ..^ M ¬ X Q i Q i + 1

Proof

Step Hyp Ref Expression
1 fourierdlem12.1 P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
2 fourierdlem12.2 φ M
3 fourierdlem12.3 φ Q P M
4 fourierdlem12.4 φ X ran Q
5 1 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
6 2 5 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
7 3 6 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
8 7 simpld φ Q 0 M
9 elmapi Q 0 M Q : 0 M
10 ffn Q : 0 M Q Fn 0 M
11 8 9 10 3syl φ Q Fn 0 M
12 fvelrnb Q Fn 0 M X ran Q j 0 M Q j = X
13 11 12 syl φ X ran Q j 0 M Q j = X
14 4 13 mpbid φ j 0 M Q j = X
15 14 adantr φ i 0 ..^ M j 0 M Q j = X
16 8 9 syl φ Q : 0 M
17 16 adantr φ i 0 ..^ M Q : 0 M
18 fzofzp1 i 0 ..^ M i + 1 0 M
19 18 adantl φ i 0 ..^ M i + 1 0 M
20 17 19 ffvelrnd φ i 0 ..^ M Q i + 1
21 20 adantr φ i 0 ..^ M i < j Q i + 1
22 21 3ad2antl1 φ i 0 ..^ M j 0 M Q j = X i < j Q i + 1
23 frn Q : 0 M ran Q
24 16 23 syl φ ran Q
25 24 4 sseldd φ X
26 25 ad2antrr φ i 0 ..^ M i < j X
27 26 3ad2antl1 φ i 0 ..^ M j 0 M Q j = X i < j X
28 17 ffvelrnda φ i 0 ..^ M j 0 M Q j
29 28 3adant3 φ i 0 ..^ M j 0 M Q j = X Q j
30 29 adantr φ i 0 ..^ M j 0 M Q j = X i < j Q j
31 simpr i 0 ..^ M j 0 M i < j i < j
32 elfzoelz i 0 ..^ M i
33 32 ad2antrr i 0 ..^ M j 0 M i < j i
34 elfzelz j 0 M j
35 34 ad2antlr i 0 ..^ M j 0 M i < j j
36 zltp1le i j i < j i + 1 j
37 33 35 36 syl2anc i 0 ..^ M j 0 M i < j i < j i + 1 j
38 31 37 mpbid i 0 ..^ M j 0 M i < j i + 1 j
39 33 peano2zd i 0 ..^ M j 0 M i < j i + 1
40 eluz i + 1 j j i + 1 i + 1 j
41 39 35 40 syl2anc i 0 ..^ M j 0 M i < j j i + 1 i + 1 j
42 38 41 mpbird i 0 ..^ M j 0 M i < j j i + 1
43 42 adantlll φ i 0 ..^ M j 0 M i < j j i + 1
44 17 ad2antrr φ i 0 ..^ M j 0 M w i + 1 j Q : 0 M
45 0zd i 0 ..^ M j 0 M w i + 1 j 0
46 elfzel2 j 0 M M
47 46 ad2antlr i 0 ..^ M j 0 M w i + 1 j M
48 elfzelz w i + 1 j w
49 48 adantl i 0 ..^ M j 0 M w i + 1 j w
50 0red i 0 ..^ M w i + 1 j 0
51 48 zred w i + 1 j w
52 51 adantl i 0 ..^ M w i + 1 j w
53 32 peano2zd i 0 ..^ M i + 1
54 53 zred i 0 ..^ M i + 1
55 54 adantr i 0 ..^ M w i + 1 j i + 1
56 32 zred i 0 ..^ M i
57 56 adantr i 0 ..^ M w i + 1 j i
58 elfzole1 i 0 ..^ M 0 i
59 58 adantr i 0 ..^ M w i + 1 j 0 i
60 57 ltp1d i 0 ..^ M w i + 1 j i < i + 1
61 50 57 55 59 60 lelttrd i 0 ..^ M w i + 1 j 0 < i + 1
62 elfzle1 w i + 1 j i + 1 w
63 62 adantl i 0 ..^ M w i + 1 j i + 1 w
64 50 55 52 61 63 ltletrd i 0 ..^ M w i + 1 j 0 < w
65 50 52 64 ltled i 0 ..^ M w i + 1 j 0 w
66 65 adantlr i 0 ..^ M j 0 M w i + 1 j 0 w
67 51 adantl j 0 M w i + 1 j w
68 34 zred j 0 M j
69 68 adantr j 0 M w i + 1 j j
70 46 zred j 0 M M
71 70 adantr j 0 M w i + 1 j M
72 elfzle2 w i + 1 j w j
73 72 adantl j 0 M w i + 1 j w j
74 elfzle2 j 0 M j M
75 74 adantr j 0 M w i + 1 j j M
76 67 69 71 73 75 letrd j 0 M w i + 1 j w M
77 76 adantll i 0 ..^ M j 0 M w i + 1 j w M
78 45 47 49 66 77 elfzd i 0 ..^ M j 0 M w i + 1 j w 0 M
79 78 adantlll φ i 0 ..^ M j 0 M w i + 1 j w 0 M
80 44 79 ffvelrnd φ i 0 ..^ M j 0 M w i + 1 j Q w
81 80 adantlr φ i 0 ..^ M j 0 M i < j w i + 1 j Q w
82 simp-4l φ i 0 ..^ M j 0 M i < j w i + 1 j 1 φ
83 0red i 0 ..^ M j 0 M w i + 1 j 1 0
84 elfzelz w i + 1 j 1 w
85 84 zred w i + 1 j 1 w
86 85 adantl i 0 ..^ M j 0 M w i + 1 j 1 w
87 0red i 0 ..^ M w i + 1 j 1 0
88 54 adantr i 0 ..^ M w i + 1 j 1 i + 1
89 85 adantl i 0 ..^ M w i + 1 j 1 w
90 0red i 0 ..^ M 0
91 56 ltp1d i 0 ..^ M i < i + 1
92 90 56 54 58 91 lelttrd i 0 ..^ M 0 < i + 1
93 92 adantr i 0 ..^ M w i + 1 j 1 0 < i + 1
94 elfzle1 w i + 1 j 1 i + 1 w
95 94 adantl i 0 ..^ M w i + 1 j 1 i + 1 w
96 87 88 89 93 95 ltletrd i 0 ..^ M w i + 1 j 1 0 < w
97 96 adantlr i 0 ..^ M j 0 M w i + 1 j 1 0 < w
98 83 86 97 ltled i 0 ..^ M j 0 M w i + 1 j 1 0 w
99 98 adantlll φ i 0 ..^ M j 0 M w i + 1 j 1 0 w
100 99 adantlr φ i 0 ..^ M j 0 M i < j w i + 1 j 1 0 w
101 85 adantl j 0 M w i + 1 j 1 w
102 peano2rem j j 1
103 68 102 syl j 0 M j 1
104 103 adantr j 0 M w i + 1 j 1 j 1
105 70 adantr j 0 M w i + 1 j 1 M
106 elfzle2 w i + 1 j 1 w j 1
107 106 adantl j 0 M w i + 1 j 1 w j 1
108 zlem1lt j M j M j 1 < M
109 34 46 108 syl2anc j 0 M j M j 1 < M
110 74 109 mpbid j 0 M j 1 < M
111 110 adantr j 0 M w i + 1 j 1 j 1 < M
112 101 104 105 107 111 lelttrd j 0 M w i + 1 j 1 w < M
113 112 adantlr j 0 M i < j w i + 1 j 1 w < M
114 113 adantlll φ i 0 ..^ M j 0 M i < j w i + 1 j 1 w < M
115 84 adantl φ i 0 ..^ M j 0 M i < j w i + 1 j 1 w
116 0zd φ i 0 ..^ M j 0 M i < j w i + 1 j 1 0
117 46 ad3antlr φ i 0 ..^ M j 0 M i < j w i + 1 j 1 M
118 elfzo w 0 M w 0 ..^ M 0 w w < M
119 115 116 117 118 syl3anc φ i 0 ..^ M j 0 M i < j w i + 1 j 1 w 0 ..^ M 0 w w < M
120 100 114 119 mpbir2and φ i 0 ..^ M j 0 M i < j w i + 1 j 1 w 0 ..^ M
121 16 adantr φ w 0 ..^ M Q : 0 M
122 elfzofz w 0 ..^ M w 0 M
123 122 adantl φ w 0 ..^ M w 0 M
124 121 123 ffvelrnd φ w 0 ..^ M Q w
125 fzofzp1 w 0 ..^ M w + 1 0 M
126 125 adantl φ w 0 ..^ M w + 1 0 M
127 121 126 ffvelrnd φ w 0 ..^ M Q w + 1
128 eleq1w i = w i 0 ..^ M w 0 ..^ M
129 128 anbi2d i = w φ i 0 ..^ M φ w 0 ..^ M
130 fveq2 i = w Q i = Q w
131 oveq1 i = w i + 1 = w + 1
132 131 fveq2d i = w Q i + 1 = Q w + 1
133 130 132 breq12d i = w Q i < Q i + 1 Q w < Q w + 1
134 129 133 imbi12d i = w φ i 0 ..^ M Q i < Q i + 1 φ w 0 ..^ M Q w < Q w + 1
135 7 simprrd φ i 0 ..^ M Q i < Q i + 1
136 135 r19.21bi φ i 0 ..^ M Q i < Q i + 1
137 134 136 chvarvv φ w 0 ..^ M Q w < Q w + 1
138 124 127 137 ltled φ w 0 ..^ M Q w Q w + 1
139 82 120 138 syl2anc φ i 0 ..^ M j 0 M i < j w i + 1 j 1 Q w Q w + 1
140 43 81 139 monoord φ i 0 ..^ M j 0 M i < j Q i + 1 Q j
141 140 3adantl3 φ i 0 ..^ M j 0 M Q j = X i < j Q i + 1 Q j
142 16 ffvelrnda φ j 0 M Q j
143 142 3adant3 φ j 0 M Q j = X Q j
144 simp3 φ j 0 M Q j = X Q j = X
145 143 144 eqled φ j 0 M Q j = X Q j X
146 145 3adant1r φ i 0 ..^ M j 0 M Q j = X Q j X
147 146 adantr φ i 0 ..^ M j 0 M Q j = X i < j Q j X
148 22 30 27 141 147 letrd φ i 0 ..^ M j 0 M Q j = X i < j Q i + 1 X
149 22 27 148 lensymd φ i 0 ..^ M j 0 M Q j = X i < j ¬ X < Q i + 1
150 149 intnand φ i 0 ..^ M j 0 M Q j = X i < j ¬ Q i < X X < Q i + 1
151 68 ad2antlr φ i 0 ..^ M j 0 M ¬ i < j j
152 56 ad3antlr φ i 0 ..^ M j 0 M ¬ i < j i
153 simpr φ i 0 ..^ M j 0 M ¬ i < j ¬ i < j
154 151 152 153 nltled φ i 0 ..^ M j 0 M ¬ i < j j i
155 154 3adantl3 φ i 0 ..^ M j 0 M Q j = X ¬ i < j j i
156 eqcom Q j = X X = Q j
157 156 biimpi Q j = X X = Q j
158 157 adantr Q j = X j i X = Q j
159 158 3ad2antl3 φ i 0 ..^ M j 0 M Q j = X j i X = Q j
160 34 ad2antlr i 0 ..^ M j 0 M j i j
161 32 ad2antrr i 0 ..^ M j 0 M j i i
162 simpr i 0 ..^ M j 0 M j i j i
163 eluz2 i j j i j i
164 160 161 162 163 syl3anbrc i 0 ..^ M j 0 M j i i j
165 164 adantlll φ i 0 ..^ M j 0 M j i i j
166 17 ad2antrr φ i 0 ..^ M j 0 M w j i Q : 0 M
167 0zd i 0 ..^ M j 0 M w j i 0
168 46 ad2antlr i 0 ..^ M j 0 M w j i M
169 elfzelz w j i w
170 169 adantl i 0 ..^ M j 0 M w j i w
171 167 168 170 3jca i 0 ..^ M j 0 M w j i 0 M w
172 0red j 0 M w j i 0
173 68 adantr j 0 M w j i j
174 169 zred w j i w
175 174 adantl j 0 M w j i w
176 elfzle1 j 0 M 0 j
177 176 adantr j 0 M w j i 0 j
178 elfzle1 w j i j w
179 178 adantl j 0 M w j i j w
180 172 173 175 177 179 letrd j 0 M w j i 0 w
181 180 adantll i 0 ..^ M j 0 M w j i 0 w
182 174 adantl i 0 ..^ M w j i w
183 elfzoel2 i 0 ..^ M M
184 183 zred i 0 ..^ M M
185 184 adantr i 0 ..^ M w j i M
186 56 adantr i 0 ..^ M w j i i
187 elfzle2 w j i w i
188 187 adantl i 0 ..^ M w j i w i
189 elfzolt2 i 0 ..^ M i < M
190 189 adantr i 0 ..^ M w j i i < M
191 182 186 185 188 190 lelttrd i 0 ..^ M w j i w < M
192 182 185 191 ltled i 0 ..^ M w j i w M
193 192 adantlr i 0 ..^ M j 0 M w j i w M
194 171 181 193 jca32 i 0 ..^ M j 0 M w j i 0 M w 0 w w M
195 194 adantlll φ i 0 ..^ M j 0 M w j i 0 M w 0 w w M
196 elfz2 w 0 M 0 M w 0 w w M
197 195 196 sylibr φ i 0 ..^ M j 0 M w j i w 0 M
198 166 197 ffvelrnd φ i 0 ..^ M j 0 M w j i Q w
199 198 adantlr φ i 0 ..^ M j 0 M j i w j i Q w
200 simplll φ i 0 ..^ M j 0 M w j i 1 φ
201 0red i 0 ..^ M j 0 M w j i 1 0
202 68 ad2antlr i 0 ..^ M j 0 M w j i 1 j
203 elfzelz w j i 1 w
204 203 zred w j i 1 w
205 204 adantl i 0 ..^ M j 0 M w j i 1 w
206 176 ad2antlr i 0 ..^ M j 0 M w j i 1 0 j
207 elfzle1 w j i 1 j w
208 207 adantl i 0 ..^ M j 0 M w j i 1 j w
209 201 202 205 206 208 letrd i 0 ..^ M j 0 M w j i 1 0 w
210 204 adantl i 0 ..^ M w j i 1 w
211 56 adantr i 0 ..^ M w j i 1 i
212 184 adantr i 0 ..^ M w j i 1 M
213 peano2rem i i 1
214 211 213 syl i 0 ..^ M w j i 1 i 1
215 elfzle2 w j i 1 w i 1
216 215 adantl i 0 ..^ M w j i 1 w i 1
217 211 ltm1d i 0 ..^ M w j i 1 i 1 < i
218 210 214 211 216 217 lelttrd i 0 ..^ M w j i 1 w < i
219 189 adantr i 0 ..^ M w j i 1 i < M
220 210 211 212 218 219 lttrd i 0 ..^ M w j i 1 w < M
221 220 adantlr i 0 ..^ M j 0 M w j i 1 w < M
222 203 adantl i 0 ..^ M j 0 M w j i 1 w
223 0zd i 0 ..^ M j 0 M w j i 1 0
224 183 ad2antrr i 0 ..^ M j 0 M w j i 1 M
225 222 223 224 118 syl3anc i 0 ..^ M j 0 M w j i 1 w 0 ..^ M 0 w w < M
226 209 221 225 mpbir2and i 0 ..^ M j 0 M w j i 1 w 0 ..^ M
227 226 adantlll φ i 0 ..^ M j 0 M w j i 1 w 0 ..^ M
228 200 227 138 syl2anc φ i 0 ..^ M j 0 M w j i 1 Q w Q w + 1
229 228 adantlr φ i 0 ..^ M j 0 M j i w j i 1 Q w Q w + 1
230 165 199 229 monoord φ i 0 ..^ M j 0 M j i Q j Q i
231 230 3adantl3 φ i 0 ..^ M j 0 M Q j = X j i Q j Q i
232 159 231 eqbrtrd φ i 0 ..^ M j 0 M Q j = X j i X Q i
233 25 adantr φ i 0 ..^ M X
234 elfzofz i 0 ..^ M i 0 M
235 234 adantl φ i 0 ..^ M i 0 M
236 17 235 ffvelrnd φ i 0 ..^ M Q i
237 233 236 lenltd φ i 0 ..^ M X Q i ¬ Q i < X
238 237 adantr φ i 0 ..^ M j i X Q i ¬ Q i < X
239 238 3ad2antl1 φ i 0 ..^ M j 0 M Q j = X j i X Q i ¬ Q i < X
240 232 239 mpbid φ i 0 ..^ M j 0 M Q j = X j i ¬ Q i < X
241 155 240 syldan φ i 0 ..^ M j 0 M Q j = X ¬ i < j ¬ Q i < X
242 241 intnanrd φ i 0 ..^ M j 0 M Q j = X ¬ i < j ¬ Q i < X X < Q i + 1
243 150 242 pm2.61dan φ i 0 ..^ M j 0 M Q j = X ¬ Q i < X X < Q i + 1
244 243 intnand φ i 0 ..^ M j 0 M Q j = X ¬ Q i * Q i + 1 * X * Q i < X X < Q i + 1
245 elioo3g X Q i Q i + 1 Q i * Q i + 1 * X * Q i < X X < Q i + 1
246 244 245 sylnibr φ i 0 ..^ M j 0 M Q j = X ¬ X Q i Q i + 1
247 246 rexlimdv3a φ i 0 ..^ M j 0 M Q j = X ¬ X Q i Q i + 1
248 15 247 mpd φ i 0 ..^ M ¬ X Q i Q i + 1