Metamath Proof Explorer


Theorem fourierdlem13

Description: Value of V in terms of value of Q . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem13.a φ A
fourierdlem13.b φ B
fourierdlem13.x φ X
fourierdlem13.p P = m p 0 m | p 0 = A + X p m = B + X i 0 ..^ m p i < p i + 1
fourierdlem13.m φ M
fourierdlem13.v φ V P M
fourierdlem13.i φ I 0 M
fourierdlem13.q Q = i 0 M V i X
Assertion fourierdlem13 φ Q I = V I X V I = X + Q I

Proof

Step Hyp Ref Expression
1 fourierdlem13.a φ A
2 fourierdlem13.b φ B
3 fourierdlem13.x φ X
4 fourierdlem13.p P = m p 0 m | p 0 = A + X p m = B + X i 0 ..^ m p i < p i + 1
5 fourierdlem13.m φ M
6 fourierdlem13.v φ V P M
7 fourierdlem13.i φ I 0 M
8 fourierdlem13.q Q = i 0 M V i X
9 8 a1i φ Q = i 0 M V i X
10 simpr φ i = I i = I
11 10 fveq2d φ i = I V i = V I
12 11 oveq1d φ i = I V i X = V I X
13 4 fourierdlem2 M V P M V 0 M V 0 = A + X V M = B + X i 0 ..^ M V i < V i + 1
14 5 13 syl φ V P M V 0 M V 0 = A + X V M = B + X i 0 ..^ M V i < V i + 1
15 6 14 mpbid φ V 0 M V 0 = A + X V M = B + X i 0 ..^ M V i < V i + 1
16 15 simpld φ V 0 M
17 elmapi V 0 M V : 0 M
18 16 17 syl φ V : 0 M
19 18 7 ffvelrnd φ V I
20 19 3 resubcld φ V I X
21 9 12 7 20 fvmptd φ Q I = V I X
22 21 oveq2d φ X + Q I = X + V I - X
23 3 recnd φ X
24 19 recnd φ V I
25 23 24 pncan3d φ X + V I - X = V I
26 22 25 eqtr2d φ V I = X + Q I
27 21 26 jca φ Q I = V I X V I = X + Q I