Metamath Proof Explorer


Theorem fourierdlem14

Description: Given the partition V , Q is the partition shifted to the left by X . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem14.1 φ A
fourierdlem14.2 φ B
fourierdlem14.x φ X
fourierdlem14.p P = m p 0 m | p 0 = A + X p m = B + X i 0 ..^ m p i < p i + 1
fourierdlem14.o O = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem14.m φ M
fourierdlem14.v φ V P M
fourierdlem14.q Q = i 0 M V i X
Assertion fourierdlem14 φ Q O M

Proof

Step Hyp Ref Expression
1 fourierdlem14.1 φ A
2 fourierdlem14.2 φ B
3 fourierdlem14.x φ X
4 fourierdlem14.p P = m p 0 m | p 0 = A + X p m = B + X i 0 ..^ m p i < p i + 1
5 fourierdlem14.o O = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
6 fourierdlem14.m φ M
7 fourierdlem14.v φ V P M
8 fourierdlem14.q Q = i 0 M V i X
9 4 fourierdlem2 M V P M V 0 M V 0 = A + X V M = B + X i 0 ..^ M V i < V i + 1
10 6 9 syl φ V P M V 0 M V 0 = A + X V M = B + X i 0 ..^ M V i < V i + 1
11 7 10 mpbid φ V 0 M V 0 = A + X V M = B + X i 0 ..^ M V i < V i + 1
12 11 simpld φ V 0 M
13 elmapi V 0 M V : 0 M
14 12 13 syl φ V : 0 M
15 14 ffvelrnda φ i 0 M V i
16 3 adantr φ i 0 M X
17 15 16 resubcld φ i 0 M V i X
18 17 8 fmptd φ Q : 0 M
19 reex V
20 19 a1i φ V
21 ovex 0 M V
22 21 a1i φ 0 M V
23 20 22 elmapd φ Q 0 M Q : 0 M
24 18 23 mpbird φ Q 0 M
25 8 a1i φ Q = i 0 M V i X
26 fveq2 i = 0 V i = V 0
27 26 oveq1d i = 0 V i X = V 0 X
28 27 adantl φ i = 0 V i X = V 0 X
29 0zd φ 0
30 6 nnzd φ M
31 0le0 0 0
32 31 a1i φ 0 0
33 0red φ 0
34 6 nnred φ M
35 6 nngt0d φ 0 < M
36 33 34 35 ltled φ 0 M
37 29 30 29 32 36 elfzd φ 0 0 M
38 14 37 ffvelrnd φ V 0
39 38 3 resubcld φ V 0 X
40 25 28 37 39 fvmptd φ Q 0 = V 0 X
41 11 simprd φ V 0 = A + X V M = B + X i 0 ..^ M V i < V i + 1
42 41 simpld φ V 0 = A + X V M = B + X
43 42 simpld φ V 0 = A + X
44 43 oveq1d φ V 0 X = A + X - X
45 1 recnd φ A
46 3 recnd φ X
47 45 46 pncand φ A + X - X = A
48 40 44 47 3eqtrd φ Q 0 = A
49 fveq2 i = M V i = V M
50 49 oveq1d i = M V i X = V M X
51 50 adantl φ i = M V i X = V M X
52 34 leidd φ M M
53 29 30 30 36 52 elfzd φ M 0 M
54 14 53 ffvelrnd φ V M
55 54 3 resubcld φ V M X
56 25 51 53 55 fvmptd φ Q M = V M X
57 42 simprd φ V M = B + X
58 57 oveq1d φ V M X = B + X - X
59 2 recnd φ B
60 59 46 pncand φ B + X - X = B
61 56 58 60 3eqtrd φ Q M = B
62 48 61 jca φ Q 0 = A Q M = B
63 elfzofz i 0 ..^ M i 0 M
64 63 15 sylan2 φ i 0 ..^ M V i
65 14 adantr φ i 0 ..^ M V : 0 M
66 fzofzp1 i 0 ..^ M i + 1 0 M
67 66 adantl φ i 0 ..^ M i + 1 0 M
68 65 67 ffvelrnd φ i 0 ..^ M V i + 1
69 3 adantr φ i 0 ..^ M X
70 41 simprd φ i 0 ..^ M V i < V i + 1
71 70 r19.21bi φ i 0 ..^ M V i < V i + 1
72 64 68 69 71 ltsub1dd φ i 0 ..^ M V i X < V i + 1 X
73 63 adantl φ i 0 ..^ M i 0 M
74 63 17 sylan2 φ i 0 ..^ M V i X
75 8 fvmpt2 i 0 M V i X Q i = V i X
76 73 74 75 syl2anc φ i 0 ..^ M Q i = V i X
77 fveq2 i = j V i = V j
78 77 oveq1d i = j V i X = V j X
79 78 cbvmptv i 0 M V i X = j 0 M V j X
80 8 79 eqtri Q = j 0 M V j X
81 80 a1i φ i 0 ..^ M Q = j 0 M V j X
82 fveq2 j = i + 1 V j = V i + 1
83 82 oveq1d j = i + 1 V j X = V i + 1 X
84 83 adantl φ i 0 ..^ M j = i + 1 V j X = V i + 1 X
85 68 69 resubcld φ i 0 ..^ M V i + 1 X
86 81 84 67 85 fvmptd φ i 0 ..^ M Q i + 1 = V i + 1 X
87 72 76 86 3brtr4d φ i 0 ..^ M Q i < Q i + 1
88 87 ralrimiva φ i 0 ..^ M Q i < Q i + 1
89 24 62 88 jca32 φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
90 5 fourierdlem2 M Q O M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
91 6 90 syl φ Q O M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
92 89 91 mpbird φ Q O M