Metamath Proof Explorer


Theorem fourierdlem15

Description: The range of the partition is between its starting point and its ending point. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem15.1 P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem15.2 φ M
fourierdlem15.3 φ Q P M
Assertion fourierdlem15 φ Q : 0 M A B

Proof

Step Hyp Ref Expression
1 fourierdlem15.1 P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
2 fourierdlem15.2 φ M
3 fourierdlem15.3 φ Q P M
4 1 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
5 2 4 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
6 3 5 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
7 6 simpld φ Q 0 M
8 reex V
9 8 a1i φ V
10 ovex 0 M V
11 10 a1i φ 0 M V
12 9 11 elmapd φ Q 0 M Q : 0 M
13 7 12 mpbid φ Q : 0 M
14 ffn Q : 0 M Q Fn 0 M
15 13 14 syl φ Q Fn 0 M
16 6 simprd φ Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
17 16 simpld φ Q 0 = A Q M = B
18 17 simpld φ Q 0 = A
19 nnnn0 M M 0
20 nn0uz 0 = 0
21 19 20 eleqtrdi M M 0
22 2 21 syl φ M 0
23 eluzfz1 M 0 0 0 M
24 22 23 syl φ 0 0 M
25 13 24 ffvelrnd φ Q 0
26 18 25 eqeltrrd φ A
27 26 adantr φ i 0 M A
28 17 simprd φ Q M = B
29 eluzfz2 M 0 M 0 M
30 22 29 syl φ M 0 M
31 13 30 ffvelrnd φ Q M
32 28 31 eqeltrrd φ B
33 32 adantr φ i 0 M B
34 13 ffvelrnda φ i 0 M Q i
35 18 eqcomd φ A = Q 0
36 35 adantr φ i 0 M A = Q 0
37 elfzuz i 0 M i 0
38 37 adantl φ i 0 M i 0
39 13 ad2antrr φ i 0 M j 0 i Q : 0 M
40 0zd i 0 M j 0 i 0
41 elfzel2 i 0 M M
42 41 adantr i 0 M j 0 i M
43 elfzelz j 0 i j
44 43 adantl i 0 M j 0 i j
45 elfzle1 j 0 i 0 j
46 45 adantl i 0 M j 0 i 0 j
47 43 zred j 0 i j
48 47 adantl i 0 M j 0 i j
49 elfzelz i 0 M i
50 49 zred i 0 M i
51 50 adantr i 0 M j 0 i i
52 41 zred i 0 M M
53 52 adantr i 0 M j 0 i M
54 elfzle2 j 0 i j i
55 54 adantl i 0 M j 0 i j i
56 elfzle2 i 0 M i M
57 56 adantr i 0 M j 0 i i M
58 48 51 53 55 57 letrd i 0 M j 0 i j M
59 40 42 44 46 58 elfzd i 0 M j 0 i j 0 M
60 59 adantll φ i 0 M j 0 i j 0 M
61 39 60 ffvelrnd φ i 0 M j 0 i Q j
62 simpll φ i 0 M j 0 i 1 φ
63 elfzle1 j 0 i 1 0 j
64 63 adantl i 0 M j 0 i 1 0 j
65 elfzelz j 0 i 1 j
66 65 zred j 0 i 1 j
67 66 adantl i 0 M j 0 i 1 j
68 50 adantr i 0 M j 0 i 1 i
69 52 adantr i 0 M j 0 i 1 M
70 peano2rem i i 1
71 68 70 syl i 0 M j 0 i 1 i 1
72 elfzle2 j 0 i 1 j i 1
73 72 adantl i 0 M j 0 i 1 j i 1
74 68 ltm1d i 0 M j 0 i 1 i 1 < i
75 67 71 68 73 74 lelttrd i 0 M j 0 i 1 j < i
76 56 adantr i 0 M j 0 i 1 i M
77 67 68 69 75 76 ltletrd i 0 M j 0 i 1 j < M
78 65 adantl i 0 M j 0 i 1 j
79 0zd i 0 M j 0 i 1 0
80 41 adantr i 0 M j 0 i 1 M
81 elfzo j 0 M j 0 ..^ M 0 j j < M
82 78 79 80 81 syl3anc i 0 M j 0 i 1 j 0 ..^ M 0 j j < M
83 64 77 82 mpbir2and i 0 M j 0 i 1 j 0 ..^ M
84 83 adantll φ i 0 M j 0 i 1 j 0 ..^ M
85 13 adantr φ j 0 ..^ M Q : 0 M
86 elfzofz j 0 ..^ M j 0 M
87 86 adantl φ j 0 ..^ M j 0 M
88 85 87 ffvelrnd φ j 0 ..^ M Q j
89 fzofzp1 j 0 ..^ M j + 1 0 M
90 89 adantl φ j 0 ..^ M j + 1 0 M
91 85 90 ffvelrnd φ j 0 ..^ M Q j + 1
92 eleq1w i = j i 0 ..^ M j 0 ..^ M
93 92 anbi2d i = j φ i 0 ..^ M φ j 0 ..^ M
94 fveq2 i = j Q i = Q j
95 oveq1 i = j i + 1 = j + 1
96 95 fveq2d i = j Q i + 1 = Q j + 1
97 94 96 breq12d i = j Q i < Q i + 1 Q j < Q j + 1
98 93 97 imbi12d i = j φ i 0 ..^ M Q i < Q i + 1 φ j 0 ..^ M Q j < Q j + 1
99 16 simprd φ i 0 ..^ M Q i < Q i + 1
100 99 r19.21bi φ i 0 ..^ M Q i < Q i + 1
101 98 100 chvarvv φ j 0 ..^ M Q j < Q j + 1
102 88 91 101 ltled φ j 0 ..^ M Q j Q j + 1
103 62 84 102 syl2anc φ i 0 M j 0 i 1 Q j Q j + 1
104 38 61 103 monoord φ i 0 M Q 0 Q i
105 36 104 eqbrtrd φ i 0 M A Q i
106 elfzuz3 i 0 M M i
107 106 adantl φ i 0 M M i
108 13 ad2antrr φ i 0 M j i M Q : 0 M
109 fz0fzelfz0 i 0 M j i M j 0 M
110 109 adantll φ i 0 M j i M j 0 M
111 108 110 ffvelrnd φ i 0 M j i M Q j
112 13 ad2antrr φ i 0 M j i M 1 Q : 0 M
113 0zd φ i 0 M j i M 1 0
114 41 ad2antlr φ i 0 M j i M 1 M
115 elfzelz j i M 1 j
116 115 adantl φ i 0 M j i M 1 j
117 0red i 0 M j i M 1 0
118 50 adantr i 0 M j i M 1 i
119 115 zred j i M 1 j
120 119 adantl i 0 M j i M 1 j
121 elfzle1 i 0 M 0 i
122 121 adantr i 0 M j i M 1 0 i
123 elfzle1 j i M 1 i j
124 123 adantl i 0 M j i M 1 i j
125 117 118 120 122 124 letrd i 0 M j i M 1 0 j
126 125 adantll φ i 0 M j i M 1 0 j
127 119 adantl φ j i M 1 j
128 2 nnred φ M
129 128 adantr φ j i M 1 M
130 1red φ j i M 1 1
131 129 130 resubcld φ j i M 1 M 1
132 elfzle2 j i M 1 j M 1
133 132 adantl φ j i M 1 j M 1
134 129 ltm1d φ j i M 1 M 1 < M
135 127 131 129 133 134 lelttrd φ j i M 1 j < M
136 127 129 135 ltled φ j i M 1 j M
137 136 adantlr φ i 0 M j i M 1 j M
138 113 114 116 126 137 elfzd φ i 0 M j i M 1 j 0 M
139 112 138 ffvelrnd φ i 0 M j i M 1 Q j
140 116 peano2zd φ i 0 M j i M 1 j + 1
141 119 adantl φ i 0 M j i M 1 j
142 1red φ i 0 M j i M 1 1
143 0le1 0 1
144 143 a1i φ i 0 M j i M 1 0 1
145 141 142 126 144 addge0d φ i 0 M j i M 1 0 j + 1
146 127 131 130 133 leadd1dd φ j i M 1 j + 1 M - 1 + 1
147 2 nncnd φ M
148 147 adantr φ j i M 1 M
149 1cnd φ j i M 1 1
150 148 149 npcand φ j i M 1 M - 1 + 1 = M
151 146 150 breqtrd φ j i M 1 j + 1 M
152 151 adantlr φ i 0 M j i M 1 j + 1 M
153 113 114 140 145 152 elfzd φ i 0 M j i M 1 j + 1 0 M
154 112 153 ffvelrnd φ i 0 M j i M 1 Q j + 1
155 simpll φ i 0 M j i M 1 φ
156 135 adantlr φ i 0 M j i M 1 j < M
157 116 113 114 81 syl3anc φ i 0 M j i M 1 j 0 ..^ M 0 j j < M
158 126 156 157 mpbir2and φ i 0 M j i M 1 j 0 ..^ M
159 155 158 101 syl2anc φ i 0 M j i M 1 Q j < Q j + 1
160 139 154 159 ltled φ i 0 M j i M 1 Q j Q j + 1
161 107 111 160 monoord φ i 0 M Q i Q M
162 28 adantr φ i 0 M Q M = B
163 161 162 breqtrd φ i 0 M Q i B
164 27 33 34 105 163 eliccd φ i 0 M Q i A B
165 164 ralrimiva φ i 0 M Q i A B
166 fnfvrnss Q Fn 0 M i 0 M Q i A B ran Q A B
167 15 165 166 syl2anc φ ran Q A B
168 df-f Q : 0 M A B Q Fn 0 M ran Q A B
169 15 167 168 sylanbrc φ Q : 0 M A B