Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem19.a |
|
2 |
|
fourierdlem19.b |
|
3 |
|
fourierdlem19.altb |
|
4 |
|
fourierdlem19.x |
|
5 |
|
fourierdlem19.d |
|
6 |
|
fourierdlem19.t |
|
7 |
|
fourierdlem19.e |
|
8 |
|
fourierdlem19.w |
|
9 |
|
fourierdlem19.z |
|
10 |
|
fourierdlem19.ezew |
|
11 |
1 4
|
readdcld |
|
12 |
11
|
rexrd |
|
13 |
2 4
|
readdcld |
|
14 |
13
|
rexrd |
|
15 |
|
ssrab2 |
|
16 |
5 15
|
eqsstri |
|
17 |
16 9
|
sselid |
|
18 |
|
iocleub |
|
19 |
12 14 17 18
|
syl3anc |
|
20 |
19
|
adantr |
|
21 |
13
|
adantr |
|
22 |
|
iocssre |
|
23 |
12 13 22
|
syl2anc |
|
24 |
16 8
|
sselid |
|
25 |
23 24
|
sseldd |
|
26 |
2 1
|
resubcld |
|
27 |
6 26
|
eqeltrid |
|
28 |
25 27
|
readdcld |
|
29 |
28
|
adantr |
|
30 |
23 17
|
sseldd |
|
31 |
30
|
adantr |
|
32 |
6
|
eqcomi |
|
33 |
32
|
a1i |
|
34 |
2
|
recnd |
|
35 |
1
|
recnd |
|
36 |
27
|
recnd |
|
37 |
34 35 36
|
subaddd |
|
38 |
33 37
|
mpbid |
|
39 |
38
|
eqcomd |
|
40 |
39
|
oveq1d |
|
41 |
4
|
recnd |
|
42 |
35 36 41
|
add32d |
|
43 |
40 42
|
eqtrd |
|
44 |
|
iocgtlb |
|
45 |
12 14 24 44
|
syl3anc |
|
46 |
11 25 27 45
|
ltadd1dd |
|
47 |
43 46
|
eqbrtrd |
|
48 |
47
|
adantr |
|
49 |
7
|
a1i |
|
50 |
|
id |
|
51 |
|
oveq2 |
|
52 |
51
|
oveq1d |
|
53 |
52
|
fveq2d |
|
54 |
53
|
oveq1d |
|
55 |
50 54
|
oveq12d |
|
56 |
55
|
adantl |
|
57 |
2 25
|
resubcld |
|
58 |
1 2
|
posdifd |
|
59 |
3 58
|
mpbid |
|
60 |
59 6
|
breqtrrdi |
|
61 |
60
|
gt0ne0d |
|
62 |
57 27 61
|
redivcld |
|
63 |
62
|
flcld |
|
64 |
63
|
zred |
|
65 |
64 27
|
remulcld |
|
66 |
25 65
|
readdcld |
|
67 |
49 56 25 66
|
fvmptd |
|
68 |
67 66
|
eqeltrd |
|
69 |
68
|
recnd |
|
70 |
69
|
adantr |
|
71 |
65
|
recnd |
|
72 |
71
|
adantr |
|
73 |
36
|
adantr |
|
74 |
70 72 73
|
subsubd |
|
75 |
74
|
eqcomd |
|
76 |
2 30
|
resubcld |
|
77 |
76 27 61
|
redivcld |
|
78 |
77
|
flcld |
|
79 |
78
|
zred |
|
80 |
79
|
adantr |
|
81 |
27
|
adantr |
|
82 |
80 81
|
remulcld |
|
83 |
64
|
adantr |
|
84 |
83 81
|
remulcld |
|
85 |
84 81
|
resubcld |
|
86 |
68
|
adantr |
|
87 |
79 27
|
remulcld |
|
88 |
87
|
recnd |
|
89 |
88 36
|
pncand |
|
90 |
89
|
eqcomd |
|
91 |
90
|
adantr |
|
92 |
82 81
|
readdcld |
|
93 |
79
|
recnd |
|
94 |
93 36
|
adddirp1d |
|
95 |
94
|
eqcomd |
|
96 |
95
|
adantr |
|
97 |
|
1red |
|
98 |
80 97
|
readdcld |
|
99 |
|
0red |
|
100 |
99 27 60
|
ltled |
|
101 |
100
|
adantr |
|
102 |
86 31
|
resubcld |
|
103 |
25
|
adantr |
|
104 |
86 103
|
resubcld |
|
105 |
27 60
|
elrpd |
|
106 |
105
|
adantr |
|
107 |
|
simpr |
|
108 |
103 31 86 107
|
ltsub2dd |
|
109 |
102 104 106 108
|
ltdiv1dd |
|
110 |
|
id |
|
111 |
|
oveq2 |
|
112 |
111
|
oveq1d |
|
113 |
112
|
fveq2d |
|
114 |
113
|
oveq1d |
|
115 |
110 114
|
oveq12d |
|
116 |
115
|
adantl |
|
117 |
30 87
|
readdcld |
|
118 |
49 116 30 117
|
fvmptd |
|
119 |
10 118
|
eqtr3d |
|
120 |
119
|
oveq1d |
|
121 |
30
|
recnd |
|
122 |
121 88
|
pncan2d |
|
123 |
120 122
|
eqtrd |
|
124 |
123
|
oveq1d |
|
125 |
93 36 61
|
divcan4d |
|
126 |
124 125
|
eqtr2d |
|
127 |
126
|
adantr |
|
128 |
67
|
oveq1d |
|
129 |
128
|
oveq1d |
|
130 |
25
|
recnd |
|
131 |
130 71
|
pncan2d |
|
132 |
131
|
oveq1d |
|
133 |
64
|
recnd |
|
134 |
133 36 61
|
divcan4d |
|
135 |
129 132 134
|
3eqtrrd |
|
136 |
135
|
adantr |
|
137 |
109 127 136
|
3brtr4d |
|
138 |
78
|
adantr |
|
139 |
63
|
adantr |
|
140 |
|
zltp1le |
|
141 |
138 139 140
|
syl2anc |
|
142 |
137 141
|
mpbid |
|
143 |
98 83 81 101 142
|
lemul1ad |
|
144 |
96 143
|
eqbrtrd |
|
145 |
92 84 81 144
|
lesub1dd |
|
146 |
91 145
|
eqbrtrd |
|
147 |
82 85 86 146
|
lesub2dd |
|
148 |
75 147
|
eqbrtrd |
|
149 |
67
|
eqcomd |
|
150 |
69 71 130
|
subadd2d |
|
151 |
149 150
|
mpbird |
|
152 |
151
|
eqcomd |
|
153 |
152
|
oveq1d |
|
154 |
153
|
adantr |
|
155 |
118
|
eqcomd |
|
156 |
1
|
rexrd |
|
157 |
|
iocssre |
|
158 |
156 2 157
|
syl2anc |
|
159 |
1 2 3 6 7
|
fourierdlem4 |
|
160 |
159 30
|
ffvelrnd |
|
161 |
158 160
|
sseldd |
|
162 |
161
|
recnd |
|
163 |
162 88 121
|
subadd2d |
|
164 |
155 163
|
mpbird |
|
165 |
10
|
oveq1d |
|
166 |
164 165
|
eqtr3d |
|
167 |
166
|
adantr |
|
168 |
148 154 167
|
3brtr4d |
|
169 |
21 29 31 48 168
|
ltletrd |
|
170 |
21 31
|
ltnled |
|
171 |
169 170
|
mpbid |
|
172 |
20 171
|
pm2.65da |
|