Metamath Proof Explorer


Theorem fourierdlem20

Description: Every interval in the partition S is included in an interval of the partition Q . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem20.m φ M
fourierdlem20.a φ A
fourierdlem20.b φ B
fourierdlem20.aleb φ A B
fourierdlem20.q φ Q : 0 M
fourierdlem20.q0 φ Q 0 A
fourierdlem20.qm φ B Q M
fourierdlem20.j φ J 0 ..^ N
fourierdlem20.t T = A B ran Q A B
fourierdlem20.s φ S Isom < , < 0 N T
fourierdlem20.i I = sup k 0 ..^ M | Q k S J <
Assertion fourierdlem20 φ i 0 ..^ M S J S J + 1 Q i Q i + 1

Proof

Step Hyp Ref Expression
1 fourierdlem20.m φ M
2 fourierdlem20.a φ A
3 fourierdlem20.b φ B
4 fourierdlem20.aleb φ A B
5 fourierdlem20.q φ Q : 0 M
6 fourierdlem20.q0 φ Q 0 A
7 fourierdlem20.qm φ B Q M
8 fourierdlem20.j φ J 0 ..^ N
9 fourierdlem20.t T = A B ran Q A B
10 fourierdlem20.s φ S Isom < , < 0 N T
11 fourierdlem20.i I = sup k 0 ..^ M | Q k S J <
12 ssrab2 k 0 ..^ M | Q k S J 0 ..^ M
13 fzossfz 0 ..^ M 0 M
14 fzssz 0 M
15 13 14 sstri 0 ..^ M
16 12 15 sstri k 0 ..^ M | Q k S J
17 16 a1i φ k 0 ..^ M | Q k S J
18 0z 0
19 0le0 0 0
20 eluz2 0 0 0 0 0 0
21 18 18 19 20 mpbir3an 0 0
22 21 a1i φ 0 0
23 1 nnzd φ M
24 1 nngt0d φ 0 < M
25 elfzo2 0 0 ..^ M 0 0 M 0 < M
26 22 23 24 25 syl3anbrc φ 0 0 ..^ M
27 13 26 sselid φ 0 0 M
28 5 27 ffvelrnd φ Q 0
29 2 rexrd φ A *
30 3 rexrd φ B *
31 lbicc2 A * B * A B A A B
32 29 30 4 31 syl3anc φ A A B
33 ubicc2 A * B * A B B A B
34 29 30 4 33 syl3anc φ B A B
35 32 34 jca φ A A B B A B
36 prssg A * B * A A B B A B A B A B
37 29 30 36 syl2anc φ A A B B A B A B A B
38 35 37 mpbid φ A B A B
39 inss2 ran Q A B A B
40 ioossicc A B A B
41 39 40 sstri ran Q A B A B
42 41 a1i φ ran Q A B A B
43 38 42 unssd φ A B ran Q A B A B
44 9 43 eqsstrid φ T A B
45 2 3 iccssred φ A B
46 44 45 sstrd φ T
47 isof1o S Isom < , < 0 N T S : 0 N 1-1 onto T
48 f1of S : 0 N 1-1 onto T S : 0 N T
49 10 47 48 3syl φ S : 0 N T
50 elfzofz J 0 ..^ N J 0 N
51 8 50 syl φ J 0 N
52 49 51 ffvelrnd φ S J T
53 46 52 sseldd φ S J
54 44 52 sseldd φ S J A B
55 iccgelb A * B * S J A B A S J
56 29 30 54 55 syl3anc φ A S J
57 28 2 53 6 56 letrd φ Q 0 S J
58 fveq2 k = 0 Q k = Q 0
59 58 breq1d k = 0 Q k S J Q 0 S J
60 59 elrab 0 k 0 ..^ M | Q k S J 0 0 ..^ M Q 0 S J
61 26 57 60 sylanbrc φ 0 k 0 ..^ M | Q k S J
62 61 ne0d φ k 0 ..^ M | Q k S J
63 1 nnred φ M
64 12 sseli j k 0 ..^ M | Q k S J j 0 ..^ M
65 elfzo0le j 0 ..^ M j M
66 64 65 syl j k 0 ..^ M | Q k S J j M
67 66 adantl φ j k 0 ..^ M | Q k S J j M
68 67 ralrimiva φ j k 0 ..^ M | Q k S J j M
69 breq2 x = M j x j M
70 69 ralbidv x = M j k 0 ..^ M | Q k S J j x j k 0 ..^ M | Q k S J j M
71 70 rspcev M j k 0 ..^ M | Q k S J j M x j k 0 ..^ M | Q k S J j x
72 63 68 71 syl2anc φ x j k 0 ..^ M | Q k S J j x
73 suprzcl k 0 ..^ M | Q k S J k 0 ..^ M | Q k S J x j k 0 ..^ M | Q k S J j x sup k 0 ..^ M | Q k S J < k 0 ..^ M | Q k S J
74 17 62 72 73 syl3anc φ sup k 0 ..^ M | Q k S J < k 0 ..^ M | Q k S J
75 12 74 sselid φ sup k 0 ..^ M | Q k S J < 0 ..^ M
76 11 75 eqeltrid φ I 0 ..^ M
77 13 76 sselid φ I 0 M
78 5 77 ffvelrnd φ Q I
79 78 rexrd φ Q I *
80 fzofzp1 I 0 ..^ M I + 1 0 M
81 76 80 syl φ I + 1 0 M
82 5 81 ffvelrnd φ Q I + 1
83 82 rexrd φ Q I + 1 *
84 11 74 eqeltrid φ I k 0 ..^ M | Q k S J
85 nfrab1 _ k k 0 ..^ M | Q k S J
86 nfcv _ k
87 nfcv _ k <
88 85 86 87 nfsup _ k sup k 0 ..^ M | Q k S J <
89 11 88 nfcxfr _ k I
90 nfcv _ k 0 ..^ M
91 nfcv _ k Q
92 91 89 nffv _ k Q I
93 nfcv _ k
94 nfcv _ k S J
95 92 93 94 nfbr k Q I S J
96 fveq2 k = I Q k = Q I
97 96 breq1d k = I Q k S J Q I S J
98 89 90 95 97 elrabf I k 0 ..^ M | Q k S J I 0 ..^ M Q I S J
99 84 98 sylib φ I 0 ..^ M Q I S J
100 99 simprd φ Q I S J
101 simpr φ ¬ S J + 1 Q I + 1 ¬ S J + 1 Q I + 1
102 83 adantr φ ¬ S J + 1 Q I + 1 Q I + 1 *
103 iccssxr A B *
104 44 103 sstrdi φ T *
105 fzofzp1 J 0 ..^ N J + 1 0 N
106 8 105 syl φ J + 1 0 N
107 49 106 ffvelrnd φ S J + 1 T
108 104 107 sseldd φ S J + 1 *
109 108 adantr φ ¬ S J + 1 Q I + 1 S J + 1 *
110 xrltnle Q I + 1 * S J + 1 * Q I + 1 < S J + 1 ¬ S J + 1 Q I + 1
111 102 109 110 syl2anc φ ¬ S J + 1 Q I + 1 Q I + 1 < S J + 1 ¬ S J + 1 Q I + 1
112 101 111 mpbird φ ¬ S J + 1 Q I + 1 Q I + 1 < S J + 1
113 fzssz 0 N
114 f1ofo S : 0 N 1-1 onto T S : 0 N onto T
115 10 47 114 3syl φ S : 0 N onto T
116 115 adantr φ Q I + 1 < S J + 1 S : 0 N onto T
117 ffun Q : 0 M Fun Q
118 5 117 syl φ Fun Q
119 5 fdmd φ dom Q = 0 M
120 119 eqcomd φ 0 M = dom Q
121 81 120 eleqtrd φ I + 1 dom Q
122 fvelrn Fun Q I + 1 dom Q Q I + 1 ran Q
123 118 121 122 syl2anc φ Q I + 1 ran Q
124 123 adantr φ Q I + 1 < S J + 1 Q I + 1 ran Q
125 29 adantr φ Q I + 1 < S J + 1 A *
126 30 adantr φ Q I + 1 < S J + 1 B *
127 82 adantr φ Q I + 1 < S J + 1 Q I + 1
128 45 54 sseldd φ S J
129 14 sseli I 0 M I
130 zre I I
131 77 129 130 3syl φ I
132 131 adantr φ ¬ S J < Q I + 1 I
133 132 ltp1d φ ¬ S J < Q I + 1 I < I + 1
134 133 adantlr φ Q I + 1 ¬ S J < Q I + 1 I < I + 1
135 simplr φ Q I + 1 ¬ S J < Q I + 1 Q I + 1
136 128 ad2antrr φ Q I + 1 ¬ S J < Q I + 1 S J
137 simpr φ Q I + 1 ¬ S J < Q I + 1 ¬ S J < Q I + 1
138 135 136 137 nltled φ Q I + 1 ¬ S J < Q I + 1 Q I + 1 S J
139 131 adantr φ Q I + 1 S J I
140 1red φ Q I + 1 S J 1
141 139 140 readdcld φ Q I + 1 S J I + 1
142 elfzoelz j 0 ..^ M j
143 142 zred j 0 ..^ M j
144 143 ssriv 0 ..^ M
145 12 144 sstri k 0 ..^ M | Q k S J
146 145 a1i φ Q I + 1 S J k 0 ..^ M | Q k S J
147 62 adantr φ Q I + 1 S J k 0 ..^ M | Q k S J
148 72 adantr φ Q I + 1 S J x j k 0 ..^ M | Q k S J j x
149 82 adantr φ Q I + 1 S J Q I + 1
150 128 adantr φ Q I + 1 S J S J
151 3 adantr φ Q I + 1 S J B
152 simpr φ Q I + 1 S J Q I + 1 S J
153 46 107 sseldd φ S J + 1
154 153 adantr φ Q I + 1 S J S J + 1
155 elfzoelz J 0 ..^ N J
156 zre J J
157 8 155 156 3syl φ J
158 157 ltp1d φ J < J + 1
159 isorel S Isom < , < 0 N T J 0 N J + 1 0 N J < J + 1 S J < S J + 1
160 10 51 106 159 syl12anc φ J < J + 1 S J < S J + 1
161 158 160 mpbid φ S J < S J + 1
162 161 adantr φ Q I + 1 S J S J < S J + 1
163 44 107 sseldd φ S J + 1 A B
164 iccleub A * B * S J + 1 A B S J + 1 B
165 29 30 163 164 syl3anc φ S J + 1 B
166 165 adantr φ Q I + 1 S J S J + 1 B
167 150 154 151 162 166 ltletrd φ Q I + 1 S J S J < B
168 149 150 151 152 167 lelttrd φ Q I + 1 S J Q I + 1 < B
169 168 adantr φ Q I + 1 S J ¬ I + 1 0 ..^ M Q I + 1 < B
170 3 adantr φ ¬ I + 1 0 ..^ M B
171 82 adantr φ ¬ I + 1 0 ..^ M Q I + 1
172 7 adantr φ ¬ I + 1 0 ..^ M B Q M
173 23 adantr φ ¬ I + 1 0 ..^ M M
174 81 adantr φ ¬ I + 1 0 ..^ M I + 1 0 M
175 fzval3 M 0 M = 0 ..^ M + 1
176 23 175 syl φ 0 M = 0 ..^ M + 1
177 176 adantr φ ¬ I + 1 0 ..^ M 0 M = 0 ..^ M + 1
178 174 177 eleqtrd φ ¬ I + 1 0 ..^ M I + 1 0 ..^ M + 1
179 simpr φ ¬ I + 1 0 ..^ M ¬ I + 1 0 ..^ M
180 178 179 jca φ ¬ I + 1 0 ..^ M I + 1 0 ..^ M + 1 ¬ I + 1 0 ..^ M
181 elfzonelfzo M I + 1 0 ..^ M + 1 ¬ I + 1 0 ..^ M I + 1 M ..^ M + 1
182 173 180 181 sylc φ ¬ I + 1 0 ..^ M I + 1 M ..^ M + 1
183 fzval3 M M M = M ..^ M + 1
184 23 183 syl φ M M = M ..^ M + 1
185 184 eqcomd φ M ..^ M + 1 = M M
186 185 adantr φ ¬ I + 1 0 ..^ M M ..^ M + 1 = M M
187 182 186 eleqtrd φ ¬ I + 1 0 ..^ M I + 1 M M
188 elfz1eq I + 1 M M I + 1 = M
189 187 188 syl φ ¬ I + 1 0 ..^ M I + 1 = M
190 189 eqcomd φ ¬ I + 1 0 ..^ M M = I + 1
191 190 fveq2d φ ¬ I + 1 0 ..^ M Q M = Q I + 1
192 172 191 breqtrd φ ¬ I + 1 0 ..^ M B Q I + 1
193 170 171 192 lensymd φ ¬ I + 1 0 ..^ M ¬ Q I + 1 < B
194 193 adantlr φ Q I + 1 S J ¬ I + 1 0 ..^ M ¬ Q I + 1 < B
195 169 194 condan φ Q I + 1 S J I + 1 0 ..^ M
196 nfcv _ k +
197 nfcv _ k 1
198 89 196 197 nfov _ k I + 1
199 91 198 nffv _ k Q I + 1
200 199 93 94 nfbr k Q I + 1 S J
201 fveq2 k = I + 1 Q k = Q I + 1
202 201 breq1d k = I + 1 Q k S J Q I + 1 S J
203 198 90 200 202 elrabf I + 1 k 0 ..^ M | Q k S J I + 1 0 ..^ M Q I + 1 S J
204 195 152 203 sylanbrc φ Q I + 1 S J I + 1 k 0 ..^ M | Q k S J
205 suprub k 0 ..^ M | Q k S J k 0 ..^ M | Q k S J x j k 0 ..^ M | Q k S J j x I + 1 k 0 ..^ M | Q k S J I + 1 sup k 0 ..^ M | Q k S J <
206 146 147 148 204 205 syl31anc φ Q I + 1 S J I + 1 sup k 0 ..^ M | Q k S J <
207 206 11 breqtrrdi φ Q I + 1 S J I + 1 I
208 141 139 207 lensymd φ Q I + 1 S J ¬ I < I + 1
209 208 adantlr φ Q I + 1 Q I + 1 S J ¬ I < I + 1
210 138 209 syldan φ Q I + 1 ¬ S J < Q I + 1 ¬ I < I + 1
211 134 210 condan φ Q I + 1 S J < Q I + 1
212 82 211 mpdan φ S J < Q I + 1
213 2 128 82 56 212 lelttrd φ A < Q I + 1
214 213 adantr φ Q I + 1 < S J + 1 A < Q I + 1
215 153 adantr φ Q I + 1 < S J + 1 S J + 1
216 3 adantr φ Q I + 1 < S J + 1 B
217 simpr φ Q I + 1 < S J + 1 Q I + 1 < S J + 1
218 165 adantr φ Q I + 1 < S J + 1 S J + 1 B
219 127 215 216 217 218 ltletrd φ Q I + 1 < S J + 1 Q I + 1 < B
220 125 126 127 214 219 eliood φ Q I + 1 < S J + 1 Q I + 1 A B
221 124 220 elind φ Q I + 1 < S J + 1 Q I + 1 ran Q A B
222 elun2 Q I + 1 ran Q A B Q I + 1 A B ran Q A B
223 221 222 syl φ Q I + 1 < S J + 1 Q I + 1 A B ran Q A B
224 223 9 eleqtrrdi φ Q I + 1 < S J + 1 Q I + 1 T
225 foelrn S : 0 N onto T Q I + 1 T j 0 N Q I + 1 = S j
226 116 224 225 syl2anc φ Q I + 1 < S J + 1 j 0 N Q I + 1 = S j
227 212 adantr φ Q I + 1 = S j S J < Q I + 1
228 simpr φ Q I + 1 = S j Q I + 1 = S j
229 227 228 breqtrd φ Q I + 1 = S j S J < S j
230 229 adantlr φ j 0 N Q I + 1 = S j S J < S j
231 10 ad2antrr φ j 0 N Q I + 1 = S j S Isom < , < 0 N T
232 51 anim1i φ j 0 N J 0 N j 0 N
233 232 adantr φ j 0 N Q I + 1 = S j J 0 N j 0 N
234 isorel S Isom < , < 0 N T J 0 N j 0 N J < j S J < S j
235 231 233 234 syl2anc φ j 0 N Q I + 1 = S j J < j S J < S j
236 230 235 mpbird φ j 0 N Q I + 1 = S j J < j
237 236 adantllr φ Q I + 1 < S J + 1 j 0 N Q I + 1 = S j J < j
238 eqcom Q I + 1 = S j S j = Q I + 1
239 238 biimpi Q I + 1 = S j S j = Q I + 1
240 239 adantl Q I + 1 < S J + 1 Q I + 1 = S j S j = Q I + 1
241 simpl Q I + 1 < S J + 1 Q I + 1 = S j Q I + 1 < S J + 1
242 240 241 eqbrtrd Q I + 1 < S J + 1 Q I + 1 = S j S j < S J + 1
243 242 adantll φ Q I + 1 < S J + 1 Q I + 1 = S j S j < S J + 1
244 243 adantlr φ Q I + 1 < S J + 1 j 0 N Q I + 1 = S j S j < S J + 1
245 10 ad2antrr φ Q I + 1 < S J + 1 j 0 N S Isom < , < 0 N T
246 simpr φ Q I + 1 < S J + 1 j 0 N j 0 N
247 106 ad2antrr φ Q I + 1 < S J + 1 j 0 N J + 1 0 N
248 isorel S Isom < , < 0 N T j 0 N J + 1 0 N j < J + 1 S j < S J + 1
249 245 246 247 248 syl12anc φ Q I + 1 < S J + 1 j 0 N j < J + 1 S j < S J + 1
250 249 adantr φ Q I + 1 < S J + 1 j 0 N Q I + 1 = S j j < J + 1 S j < S J + 1
251 244 250 mpbird φ Q I + 1 < S J + 1 j 0 N Q I + 1 = S j j < J + 1
252 237 251 jca φ Q I + 1 < S J + 1 j 0 N Q I + 1 = S j J < j j < J + 1
253 252 ex φ Q I + 1 < S J + 1 j 0 N Q I + 1 = S j J < j j < J + 1
254 253 reximdva φ Q I + 1 < S J + 1 j 0 N Q I + 1 = S j j 0 N J < j j < J + 1
255 226 254 mpd φ Q I + 1 < S J + 1 j 0 N J < j j < J + 1
256 ssrexv 0 N j 0 N J < j j < J + 1 j J < j j < J + 1
257 113 255 256 mpsyl φ Q I + 1 < S J + 1 j J < j j < J + 1
258 112 257 syldan φ ¬ S J + 1 Q I + 1 j J < j j < J + 1
259 simplr φ j J < j j < J + 1 j
260 8 155 syl φ J
261 260 ad2antrr φ j J < j j < J + 1 J
262 simprl φ j J < j j < J + 1 J < j
263 simprr φ j J < j j < J + 1 j < J + 1
264 btwnnz J J < j j < J + 1 ¬ j
265 261 262 263 264 syl3anc φ j J < j j < J + 1 ¬ j
266 259 265 pm2.65da φ j ¬ J < j j < J + 1
267 266 nrexdv φ ¬ j J < j j < J + 1
268 267 adantr φ ¬ S J + 1 Q I + 1 ¬ j J < j j < J + 1
269 258 268 condan φ S J + 1 Q I + 1
270 ioossioo Q I * Q I + 1 * Q I S J S J + 1 Q I + 1 S J S J + 1 Q I Q I + 1
271 79 83 100 269 270 syl22anc φ S J S J + 1 Q I Q I + 1
272 fveq2 i = I Q i = Q I
273 oveq1 i = I i + 1 = I + 1
274 273 fveq2d i = I Q i + 1 = Q I + 1
275 272 274 oveq12d i = I Q i Q i + 1 = Q I Q I + 1
276 275 sseq2d i = I S J S J + 1 Q i Q i + 1 S J S J + 1 Q I Q I + 1
277 276 rspcev I 0 ..^ M S J S J + 1 Q I Q I + 1 i 0 ..^ M S J S J + 1 Q i Q i + 1
278 76 271 277 syl2anc φ i 0 ..^ M S J S J + 1 Q i Q i + 1