Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem22.f |
|
2 |
|
fourierdlem22.c |
|
3 |
|
fourierdlem22.fibl |
|
4 |
|
fourierdlem22.a |
|
5 |
|
fourierdlem22.b |
|
6 |
1
|
adantr |
|
7 |
|
ioossre |
|
8 |
|
id |
|
9 |
8 2
|
eleqtrdi |
|
10 |
7 9
|
sselid |
|
11 |
10
|
adantl |
|
12 |
6 11
|
ffvelrnd |
|
13 |
12
|
adantlr |
|
14 |
|
nn0re |
|
15 |
14
|
adantr |
|
16 |
10
|
adantl |
|
17 |
15 16
|
remulcld |
|
18 |
17
|
recoscld |
|
19 |
18
|
adantll |
|
20 |
13 19
|
remulcld |
|
21 |
|
ioombl |
|
22 |
2 21
|
eqeltri |
|
23 |
22
|
a1i |
|
24 |
|
eqidd |
|
25 |
|
eqidd |
|
26 |
23 19 13 24 25
|
offval2 |
|
27 |
19
|
recnd |
|
28 |
13
|
recnd |
|
29 |
27 28
|
mulcomd |
|
30 |
29
|
mpteq2dva |
|
31 |
26 30
|
eqtr2d |
|
32 |
|
coscn |
|
33 |
32
|
a1i |
|
34 |
2 7
|
eqsstri |
|
35 |
|
ax-resscn |
|
36 |
34 35
|
sstri |
|
37 |
36
|
a1i |
|
38 |
14
|
recnd |
|
39 |
|
ssid |
|
40 |
39
|
a1i |
|
41 |
37 38 40
|
constcncfg |
|
42 |
|
cncfmptid |
|
43 |
36 39 42
|
mp2an |
|
44 |
43
|
a1i |
|
45 |
41 44
|
mulcncf |
|
46 |
33 45
|
cncfmpt1f |
|
47 |
|
cnmbf |
|
48 |
22 46 47
|
sylancr |
|
49 |
48
|
adantl |
|
50 |
1
|
feqmptd |
|
51 |
50
|
reseq1d |
|
52 |
|
resmpt |
|
53 |
34 52
|
mp1i |
|
54 |
51 53
|
eqtr2d |
|
55 |
54 3
|
eqeltrd |
|
56 |
55
|
adantr |
|
57 |
|
1re |
|
58 |
|
simpr |
|
59 |
|
nfv |
|
60 |
|
nfmpt1 |
|
61 |
60
|
nfdm |
|
62 |
61
|
nfcri |
|
63 |
59 62
|
nfan |
|
64 |
18
|
ex |
|
65 |
64
|
adantr |
|
66 |
63 65
|
ralrimi |
|
67 |
|
dmmptg |
|
68 |
66 67
|
syl |
|
69 |
58 68
|
eleqtrd |
|
70 |
|
eqidd |
|
71 |
|
oveq2 |
|
72 |
71
|
fveq2d |
|
73 |
72
|
adantl |
|
74 |
|
simpr |
|
75 |
14
|
adantr |
|
76 |
34 74
|
sselid |
|
77 |
75 76
|
remulcld |
|
78 |
77
|
recoscld |
|
79 |
70 73 74 78
|
fvmptd |
|
80 |
79
|
fveq2d |
|
81 |
|
abscosbd |
|
82 |
77 81
|
syl |
|
83 |
80 82
|
eqbrtrd |
|
84 |
69 83
|
syldan |
|
85 |
84
|
ralrimiva |
|
86 |
|
breq2 |
|
87 |
86
|
ralbidv |
|
88 |
87
|
rspcev |
|
89 |
57 85 88
|
sylancr |
|
90 |
89
|
adantl |
|
91 |
|
bddmulibl |
|
92 |
49 56 90 91
|
syl3anc |
|
93 |
31 92
|
eqeltrd |
|
94 |
20 93
|
itgrecl |
|
95 |
|
pire |
|
96 |
95
|
a1i |
|
97 |
|
0re |
|
98 |
|
pipos |
|
99 |
97 98
|
gtneii |
|
100 |
99
|
a1i |
|
101 |
94 96 100
|
redivcld |
|
102 |
101 4
|
fmptd |
|
103 |
102
|
ffvelrnda |
|
104 |
103
|
ex |
|
105 |
|
nnnn0 |
|
106 |
17
|
resincld |
|
107 |
106
|
adantll |
|
108 |
13 107
|
remulcld |
|
109 |
|
eqidd |
|
110 |
23 107 13 109 25
|
offval2 |
|
111 |
107
|
recnd |
|
112 |
111 28
|
mulcomd |
|
113 |
112
|
mpteq2dva |
|
114 |
110 113
|
eqtr2d |
|
115 |
|
sincn |
|
116 |
115
|
a1i |
|
117 |
45
|
adantl |
|
118 |
116 117
|
cncfmpt1f |
|
119 |
|
cnmbf |
|
120 |
22 118 119
|
sylancr |
|
121 |
|
simpr |
|
122 |
|
nfmpt1 |
|
123 |
122
|
nfdm |
|
124 |
123
|
nfcri |
|
125 |
59 124
|
nfan |
|
126 |
106
|
ex |
|
127 |
126
|
adantr |
|
128 |
125 127
|
ralrimi |
|
129 |
|
dmmptg |
|
130 |
128 129
|
syl |
|
131 |
121 130
|
eleqtrd |
|
132 |
|
eqidd |
|
133 |
71
|
fveq2d |
|
134 |
133
|
adantl |
|
135 |
77
|
resincld |
|
136 |
132 134 74 135
|
fvmptd |
|
137 |
136
|
fveq2d |
|
138 |
|
abssinbd |
|
139 |
77 138
|
syl |
|
140 |
137 139
|
eqbrtrd |
|
141 |
131 140
|
syldan |
|
142 |
141
|
ralrimiva |
|
143 |
|
breq2 |
|
144 |
143
|
ralbidv |
|
145 |
144
|
rspcev |
|
146 |
57 142 145
|
sylancr |
|
147 |
146
|
adantl |
|
148 |
|
bddmulibl |
|
149 |
120 56 147 148
|
syl3anc |
|
150 |
114 149
|
eqeltrd |
|
151 |
108 150
|
itgrecl |
|
152 |
105 151
|
sylan2 |
|
153 |
95
|
a1i |
|
154 |
99
|
a1i |
|
155 |
152 153 154
|
redivcld |
|
156 |
155 5
|
fmptd |
|
157 |
156
|
ffvelrnda |
|
158 |
157
|
ex |
|
159 |
104 158
|
jca |
|